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Abstract

Human pose tracking is a useful tool with multiple applications in a variety of areas

ranging from medical, artistic, to industrial. Existing approaches are often impractical as

they require complex instrumentation and specialized hardware. In this research we develop

a computational theory by which high degree of freedom articulated human pose tracking

can be accomplished from observations of a single color image stream. This is supported by

a detailed empirical analysis of its implementation through an extensive set of experiments

of synthetic data, publicly available datasets, and live video capture sequences.

We posit that, while ambiguous, occluding contours carry enough information to track

fully articulated human pose over time in most real world cases. We propose a hybrid

computational framework based on both a classical particle filter tracker and a deep learning

approach to test our hypothesis. Deep learning is used for state recognition, while the particle

filter is used to interpolate and maintain consistency over time. Formally, the input to our

tracker is a time-series of images from a monocular camera capture system and the output

is the time-varying pose configuration of an articulated 3D human model.

The amount of data required to train a convolutional neural network to perform pose

tracking, and the complexity in collecting such data, presents an important problem. To cir-

cumvent this, we propose a two pronged approach. First, we use features (silhouettes) instead

of full image information as the input to the network, which both reduces the complexity

of the input data and makes the tracker texture invariant. The second characteristic of our

training strategy is to rely on synthetic data, obtained from a generative model. These two

tactics allow a large amount of data to be generated and enable training of the model. We

show experimentally that the use of synthetic data generalizes to real-world data.

For the particle filter, we rely on a metric to compare the silhouettes of objects and

evaluate the validity of candidate poses obtained both from the neural network and from

basic motion models based on physics. To select the most appropriate metric for use with
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human shapes, we provide a careful review of methods presented in the literature and present

a systematic approach to test their accuracy in order to select the best one.

Another component necessary for the research presented herein resides in determining

how to store and access various types of time-based information. We present a novel database

architecture, which allows asynchronous access to data and enables predictions to be made

from recorded data.

All choices made in the implementation of our framework are based on carefully presented

experiments on synthetic data to ensure that each individual component operates as well as

possible. Notable aspects that are evaluated include pose propagation motion models and

particle resampling strategies. Synthetic data is also used to validate our initial hypothesis

through the use of both a small scale articulated model and a virtual human model. We end

our research by applying our tracker to real-world human motion sequences. We use both

sequences recorded in front of a green screen and sequences recorded in natural environments

to evaluate both silhouette extraction algorithms and tracker performance.

We find that when silhouettes are correctly segmented, it is indeed possible to track pose

at high degrees of freedom (37 in our experiments) – a significant advance to the state of

the art. While this supports the ability of our approach to generalize better than other state

of the art trackers, it is currently limited by segmentation accuracy on standard datasets,

making for less favorable comparison. Still, we believe that this works marks a promising

approach to tracking complex 3D objects from monocular image sequences which will only

improve with better figure/ground separation.

ii



Résumé

Le suivi de postures humaines est un outil utile avec de multiples applications dans une

variété de domaines allant du médical, artistique au secteur industriel. Les approches exis-

tantes sont souvent difficilement applicable car elles nécessitent une instrumentation com-

plexe et du matériel spécialisé. Dans cette recherche, nous développons une théorie par

laquelle un suivi de pose humaine articulée à haut degré de liberté peut être accompli à

partir des observations d’un flux d’images monoculaire. Ceci est soutenu par une analyse

empirique détaillée de sa mise en oeuvre à travers un vaste ensemble d’expériences avec des

données synthétiques, des ensembles de données accessibles au public et avec de vrais videos.

Nous postulons que, bien qu’ambigus, les contours de silhouettes contiennent suffisam-

ment d’informations pour suivre la pose humaine articulée au cours de la plupart des cas

présents dans des séquences videos réelles. Nous proposons un cadre hybride basé à la fois

sur un système classique de suivi des filtres à particules et sur une approche d’apprentissage

en profondeur pour tester notre hypothèse. L’apprentissage en profondeur est utilisé pour

la reconnaissance d’état, tandis que le filtre à particules est utilisé pour interpoler et main-

tenir la cohérence temporelle. Plus formellement, l’information à l’entrée de notre système

est une série chronologique d’images provenant d’une caméra monoculaire et l’information à

la sortie est la pose d’un modèle humain 3D articulé.

La quantité de données nécessaires pour entrainer un réseau convolutionnel afin d’ef-

fectuer le suivi de pose, et la complexité associée à la collecte de ces données, présente

un problème important. Pour contourner cela, nous proposons une approche à deux volets.

Tout d’abord, nous utilisons des silhouettes au lieu d’image complètes comme intrant sur le

réseau, ce qui réduit à la fois la complexité des données d’entrée et rend le système invariant

à la texture. La deuxième caractéristique de notre stratégie d’apprentissage est de s’appuyer

sur des données synthétiques, obtenues à partir d’un modèle génératif. Ces deux tactiques

permettent de générer une grande quantité de données et permet l’apprentissage du modèle.

Nous montrons expérimentalement que l’utilisation des données synthétiques est applicable
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aux données du monde réel.

Pour le filtre à particules, nous nous appuyons sur une métrique pour comparer les sil-

houettes des objets et évaluer la validité des poses candidates obtenues à la fois à partir du

réseau neuronal et à partir de modèles de mouvement basés sur la physique. Pour sélec-

tionner la métrique la plus appropriée pour une utilisation avec des formes humaines, nous

fournissons un examen minutieux des méthodes présentées dans la littérature et présentons

une approche systématique pour évaluer leur précision afin de sélectionner la meilleure.

Un autre élément nécessaire à la recherche présentée ici est de déterminer comment en-

register et accéder à divers types d’informations temporelles. Nous présentons une nouvelle

architecture de base de données, qui permet un accès asynchrone aux données et permet de

faire des prédictions à partir de données enregistrées.

Tous les choix effectués dans la mise en oeuvre de notre système sont basés sur des ex-

périences soigneusement présentées sur des données synthétiques afin de garantir que chaque

composant fonctionne aussi bien que possible, individuellement. Les aspects notables qui

sont évalués comprennent les modèles de mouvement, les modes de propagation de parti-

cules, ainsi que les stratégies de ré-échantillonnage des particules. Des données synthétiques

sont également utilisées pour valider notre hypothèse initiale en utilisant à la fois un modèle

articulé à petite échelle et un modèle humain virtuel. Nous terminons nos recherches en ap-

pliquant notre traqueur à de vraies séquences de mouvements humains. Nous utilisons à la

fois des séquences enregistrées devant un écran vert et des séquences enregistrées dans des

environnements naturels pour évaluer à la fois les algorithmes d’extraction de silhouette et

les performances du traqueur.

Nous constatons, lorsque les silhouettes sont correctement segmentées, qu’il est en effet

possible de suivre une pose avec un large nombre de degrés de liberté (37 dans nos expéri-

ences) – une avancée significative en comparaison avec d’autres approches. Bien que cela

démontre la capacité de notre approche à se généraliser mieux que d’autres traqueurs, notre

approche est actuellement limitée par la précision de la segmentation de silhouettes, ce qui
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est problématique sur les ensembles de données standard, cela rend les comparaisons moins

favorables. Néanmoins, nous pensons que ce travail marque une direction prometteuse pour

suivre des objets 3D articulés complexes à partir de séquences d’images monoculaires qui ne

peut que s’améliorer avec une meilleure extraction de silhouette.
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Chapter 1

Introduction

1.1 Problem Statement and Thesis

The fundamental problem addressed by this research is the inference of complex behavior

given noisy, limited, and ambiguous observable data. To expend on this, let us start by

defining the issues we encounter. The noise in the measurement results from inherent im-

perfections of the measuring process itself. These limitations are due to the fact that it is

impossible to capture the sum of all information related to the observed process. Both of

these problems could be alleviated by either using better sensors or more sensors, but the

goal of this research is to cope with these restrictions. The final issue we tackle is ambiguity.

Assuming that a system can be modeled, we define ambiguous problems as those where the

function mapping from parameter space to measurement space is non-injective, and is not

necessarily surjective. What we mean by that is that any point in the parameter space maps

to a point in the measurement space. However, not all points in the measurement space nec-

essarily map back to the parameter space, and that points that do map back may not have

a unique mapping. This means a given measurement can be produced by multiple different

configuration of the parameters.

The main thesis we put forward here is that such a class of problem can be addressed
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by the regularization of the incomplete data based on a set of prior models and assumptions

rooted in a general understanding of the observed system’s context. To do this, we use a

model-based approach which reduces the complexity of the system to a finite set of parame-

ters. This model should be accurate enough to allow us to make predictions of future states

based on the current and previous states. We can then take the incomplete and ambiguous

measurements and compress them into a representation that encodes the parameters we are

trying to evaluate, while discarding other parameters we are not concerned with. The prob-

lem then turns into a fusion task as we combine our observations and our expectations into

a unified representation that allows us to obtain an appropriate estimate of the state of the

observed system.

To experimentally test our theory, we choose to develop a high degree of freedom human

posture tracking system with image sequences recorded from a single color camera. Human

pose tracking is an ideal problem choice as it presents all of the issues discussed above. All

cameras present a certain level of noise and the finite resolution presents a limit to the amount

of data we can capture. The use of a single camera further limits our perception of the model

being tracked and introduces ambiguity due to occlusion. This occlusion can stem from

either objects in the scene or self occlusion of the human model itself. Human motion is also

quite complex and provides ambiguous cases depending on how it changes with respect to

the camera position.

We embed the understanding of context in the tracking task by using established knowl-

edge of physics and priors based on known biomechanical properties of the tracked subjects.

We demonstrate that relying on this richer context allows us to reduce the pose tracking space

and provide better tracking results. We use a particle filter to fuse the predictions from our

model of the system and the limited recorded measurements. To reduce the complexity of

the fusion task, we opt to use a generative model that relies on the silhouette of the tracked

model. We leverage the flexibility of generating synthetic data to both show that the ap-

proach proposed herein is viable and that appropriate synthetic data can generalize to real
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world scenarios.

The use of silhouettes is motivated by the desire to reduce the influence of varying texture

due to clothing and lighting conditions in order to make the tracking system more easily

generalizable. The choice of silhouettes is based on work by Koenderink et al. [1984] who

have shown that the visual contour of an object can be used to infer a lot of information about

the curvature and surface geometry of the object generating the contour. This framework

allows us to demonstrate experimentally that, by adding such contextual information and

prior knowledge, it is possible to track complex three dimensional articulated pose from

limited silhouette information.

While the research is geared toward the specific application of observing the articulated

3D structure of a human with the use of a single monocular camera, the proposed solution

is shown to generalize to other analogous scientific problems through small-scale experimen-

tation on non-human articulated structures. To further show the flexibility of our method,

results with other data modalities such as stereo vision systems and depth sensing cameras

are also presented. We use the small scale model of Chapter 4 to show that the addition

of one or more additional cameras greatly improves the tracking results. Section 2.3 shows

how depth information can be integrated into our tracking framework.

1.2 Background

The research topic discussed herein was inspired by a project titled “Collaborative, Human-

focused, Assistive Robotics for Manufacturing” (CHARM), funded by General Motors Re-

search as part of the NSERC CRD program. This project consisted of the development of a

robotic assistant for human workers in an assembly line context. A photo representing the

type of environment considered by CHARM is presented if Figure 1.1. One important piece

of this system was the visual tracking of the human worker. The project began with the use

of an expensive and intrusive VICON system, that involves an array of infra-red cameras
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detecting and tracking reflective markers placed on the subject being tracked. The second

development iteration of the project saw the VICON system replaced by a much cheaper

and non-intrusive array of Microsoft Kinect sensors [Phan and Ferrie, 2015]. This second

iteration led to the publication of a paper describing the specific system [Cormier et al.,

2015]. Figure 1.2 shows how the tracking data was displayed back to the human worker. At

the highest level, the motivation is to further reduce the cost and complexity of the tracking

system by determining whether the array of Kinect sensors can be replaced by one or more

standard color cameras. On a more scientific level, we show that we can trade measurement

complexity for model complexity and thus that a richer model that includes contextual in-

formation can compensate for lower resolution measurements. There exists a broad range

of potential applications for simple, cheap, and non-intrusive human motion capture. These

range from safety critical human-robot interaction to artistic purposes in visual effects for

movies and games. A number of publications resulted from the CHARM research project

[Cormier and Ferrie, 2016; Cormier et al., 2015; Gleeson et al., 2015, 2013a,b; Haddadi et al.,

2013; Hart et al., 2014, 2018; Phan and Ferrie, 2015], more information can be found at

http://charm.sites.olt.ubc.ca/

1.3 Contributions

Investigating the topics related to the problem stated earlier allows us to explore the state

of the art from a more critical and focused point of view. This enables us to determine

some of the shortcomings of the currently employed methodologies and make improvements

in certain areas. We will now discuss some of these contributions.

The first of these resides in a computational framework for the inference process that can

combine predictions generated from a model of the system with the recorded data from the

real system. While this topic has been investigated by others, we feel that it still lacks

a solution appropriate to the tracking problem outlined above, which involves both high
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Figure 1.1: Photo from a CHARM project experiment showing the type of industrial envi-
ronment considered.

Figure 1.2: Photo from a CHARM project experiment showing .
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dimensional data and types of data that are not necessarily directly relatable. We present

an hybrid method based on particle filtering and machine learning to fuse image data and

modeled data. This is discussed in Section 2.4 and Chapter 5.

The second contribution involves determining to what extent low dimensional descriptors

such as silhouettes can represent complex deformable three dimensional shapes with high

number of degrees of freedom. We explore this area by providing a survey of methods

used in the literature to compare the similarity of silhouettes and determine how well they

correlate to changes in the pose of the model generating the silhouette. We detail a set of

experiments, and present their results in Section 2.3.

The third and arguably most practical contribution stems from finding ways to maintain

a consistent representation of the state of the modeled system over time. This contribution

resides in the development of the Situational Awareness DataBase (SADB) system. This

system was originally developed as part of the CHARM project to store, maintain, and

distribute contextual information that can then be used by other components of the system

or by other networked systems that require the human pose or other recorded pieces of

information. This system allows the simple organization of multiple types of time-coded

data, and provides a straightforward means to retrieve values at any desired timestamp by

proposing a novel data access framework that includes interpolation and extrapolation.

Another contribution is the use of deformable 3D mesh models, in contrast to most

methods in the classical literature that rely on a combination of cylinders and spheres to

model humans. The use of parameterized photo-realistic 3D models based on biomechanical

data provides a more accurate prediction of shape and appearance of both a human and

its motion. The other advantage of using meshes is the possibility of using 3D scanning to

better model the humans being tracked.

An additional significant contribution is that we show how traditional priors can be

replaced by synthetic data throughout the process of developing and evaluating our tracker.

Synthetic data rendered from our human model is first be used to determine the best metric
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to compare silhouettes. Synthetic data is also used to systematically tune the numerous

parameters of our tracker to maximize accuracy. It is also used to train a convolutional

neural network (CNN) as part of the hybrid particle filter human tracking approach and is

used to evaluate the performance of our complete tracker.

The final contribution and potentially most significant from a practical point of view is

the development of the complete tracking system itself, which, as shown in Chapters 4 and

5, can be used to track a wide variety of model types.

1.4 Overview

As a large part of this research is experimental in nature, a key part of the work resides in

devising an experimental test bed on which to test and prove our ideas and approaches and

compare them to the state of the art. The simplified block diagram of the framework we

implemented is shown in Figure 1.3. As our research focuses on each of these components,

the block diagram also presents a good overview of how the research is structured. The

filtering block is drawn with a dashed outline as it is not necessarily a component in itself,

but rather integrated into both feature extraction and pose estimation.

Input Data Tracking System Output Data

Camera

File

Network

Stream

Feature

Extraction

Pose

Estimation
Filtering Human Pose

SADB

Renderer

Contextual

Information

Training

Data

Pose

Renderer

Figure 1.3: Block diagram of the experimental system

The main flow of the tracking process moves from left to right, from the input data on
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the left side of the block diagram to the renderer at the bottom right, which allows us to

visualize the results. The bulk of the research is focused on the blocks in the blue rectangle.

The topic of feature extraction is explored in depth in Section 2.1. As stated earlier, we

found that silhouettes provide a viable feature for the task at hand. Feature extraction thus

consists of segmenting input images into a foreground silhouette and a background mask. A

large part of Section 2.1 is used to evaluate different metrics to compare silhouettes. This,

in turn, enables us to demonstrate that silhouettes do encode the articulated pose of the

skeleton. We also describe different methods to extract silhouettes from image sequences as

well as the common issues encountered with these methods.

Pose estimation consists of looking at the extracted features, predictions from our model,

as well as contextual information to determine what the most likely pose of the model is. This

is both a data fusion task, as different types of data are used, and an optimization problem

to find the pose. The most obvious way to tackle both aspects at once is through the use

of a filtering approach. Two types of filters that are commonly used for similar applications

are the Kalman filter [Kalman, 1960] and the particle filter [Salmond and Gordon, 2005].

Both of these approaches require us to map the high dimensional input data to a lower

dimensional space defined by the parameters of the system’s model, in our case, the pose

vector. Filtering allows us to integrate the results over time, which decreases ambiguity. A

discussion of other approaches is presented in Section 1.5. The choice of particle filtering is

further discussed in Section 2.4.

The pose renderer is a 3D rendering system that renders deformable mesh models given

a pose vector. It is used both to evaluate candidate poses from the filter as well as generate

training data for CNN-based approaches that are discussed in Section 2.4, as well as in

Chapter 5.

Contextual information is required to determine ways in which to use knowledge of the

environment to generate priors for the model parameters. Based on a general understanding

of the physics acting within the world from Newton’s laws of motion [Newton et al., 1833] and
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the kinematic equations presented by Whittaker [1904], we can write a set of equations that

can be used as a time evolution model of the system; these will be described in Section 2.4.

By starting with information recorded about the environment, a simulation approach can be

employed to extrapolate and generate expected values and better interpret the state of the

world by making predictions. This results in motion models that can be used by the particle

filter. This means that starting from limited knowledge, we can predict the next physically

plausible states of the environment, including the motion of humans within the observed

world. These motion models are presented in Section 2.4. The contextual information also

includes models of humans. These models consist of both a geometric mesh model, required

to render virtual silhouettes, and a skeletal model used to both deform the mesh model

and compute the output of the pose estimation. Geometric models for both human and

non-human subjects are described in Chapters 5 and 4, respectively. Other useful sources

of contextual information are camera calibration and background models. The SADB block

represents the Situational Awareness DataBase system that was previously mentioned in the

contributions section.

A complete system is obtained by integrating the components into a complete tracking

framework, which will be presented in Chapter 4. In Chapter 5, this framework is tested

through the use of standard datasets to obtain meaningful comparison to the state of the

art. The completed framework also enables us to go further into specific research areas

by enabling more precise experimentation. We have also devised means to experiment and

determine, from a more practical standpoint, the limits of each component individually.

As all these experiments result in a large number of videos and plots, only selected results

are included in this document, while most are not included because of space constraints.

The complete results can be found on a companion website located at http://cim.mcgill.

ca/~olivier/thesis/.

To summarize, we find that while ambiguity is inevitable, the shape of the occluding

contour of a deformable object can be used to estimate the articulated pose of the object.
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The use of an appropriate metric and the introduction of contextual information allows us to

find instantaneous hypotheses. Integrating these hypotheses over time enables us to converge

to the most likely solution. In cases where ambiguity is unresolvable, our model can provide

a physically meaningful temporary solution until ambiguity is resolved and we can converge

back to a better solution.

1.5 Related Literature

As the topic of articulated human posture tracking involves a variety of sub-areas, we have

segmented the general topic into three discrete components to facilitate the review [Moeslund

et al., 2006]: initialization, tracking and pose estimation. Some authors also describe a

fourth component [Moeslund et al., 2006], which operates at a higher level for functions

such as identity recognition or gesture detection. The current research considers some of the

implications of initialization, and focuses on the tracking and pose estimation aspects. As

identity recognition and gesture detection are separate topics, relying more on a semantic

understanding of the scene, we choose not to cover them in the current research.

The global surveys of human pose tracking and motion capture presented by Moeslund

and Granum [2001] and Moeslund et al. [2006] detail many different approaches presented

in the literature. Two classes of methods are presented: active and passive sensing. Active

sensing involves the instrumentation of the tracked subjects by requiring them to wear sen-

sors [Andrews et al., 2016], which may be problematic, impractical, or even impossible in

real-life situations. The current thesis thus only focuses on passive sensing. Within the

passive tracking literature, a large number of papers published in the past few years are

aimed at cameras with depth sensors (for example, the approach published by Shotton et al.

[2013]). This is mostly due to the increasing availability of devices like the Microsoft Kinect

[Lieberknecht et al., 2011; Fallon et al., 2012; Shotton et al., 2013; Wang et al., 2013]. While

these new devices present a good approach by providing much denser measurement than in-
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tensity cameras, they do not present a better way to make use of contextual information.

As stated earlier, we determine the feasibility of a human posture tracking with a monoc-

ular camera configuration by putting more emphasis on methods which use similar capture

setups.

The initialization component consists of determining the best way to start the system

in a valid state, in order to allow successful tracking in subsequent frames. The first thing

that needs to be initialized is a model of the subject, which includes the kinematic structure,

usually in the form of skeletal model, and appearance model, which usually encompasses

both the shape and texture. Most papers define the pose (or state) of a skeletal structure as

either the angles of each bone with respect to their parent or as the absolute position and

orientation of each bone with respect to a global reference frame. The number of degrees

of freedom (DOF) comprising the skeletons varies greatly between publications. It ranges

from two [Isard and MacCormick, 2001], when assuming that the human is standing on the

ground and tracking only the position on the floor, to 40 degrees of freedom [Szczuko, 2014]

when tracking a complex skeleton with a large number of rigid bodies. The goal here is to

find the minimum number of DOF to reduce the dimensionality of the search space while

maintaining a skeleton capable of matching the motion of a real human skeleton. Scale is

also an important factor. For example, the hand tracker presented by Wang et al. [2013]

describes a 28 DOF model of a hand. While this is valid for tracking in a video sequence

where only a hand is present, modeling a hand to this level of detail in a full body tracker

is not reasonable as the pose space would be prohibitively large and the resolution of the

input data would most likely not convey enough information to recover pose properly. The

physical characteristics of the rigid bodies in the skeleton are usually assumed to be known

and static over the tracking period. These characteristics include the length, the mass, the

inertia tensors, and the joint angle limits. The exact values selected are usually based on bio-

mechanics [del Rincón et al., 2011] or selected manually. To model the shape of humans, most

methods rely on the combination of simple geometric shapes such as spheres and cylinders
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[Isard and MacCormick, 2001; Klinger and Arens, 2009; Vondrak et al., 2013; Sedai et al.,

2013; Szczuko, 2014]. Other methods rely on either generic deformable 3D mesh models

or mesh models acquired from 3D scanning [Stoll et al., 2010]. The final major aspect of

initialization is to determine the initial pose. Most of the methods assume that the initial

pose of the skeleton is known a-priori. Iterative closest point (ICP) can also be used to find

a set of initial matches between a rendered model and the first image frame [Wang et al.,

2013]. While most likely not unique due to ambiguity, these matches provide an adequate

set of candidates to initialize trackers.

The tracking part is where most of the low level computer vision algorithms are required.

As with most computer vision applications, the first stage of the tracking systems presented

in the various surveyed publications consist of a feature extraction process. While CNN based

tracking methods use learning of convolution kernels to determine appropriate features, most

of non-CNN methods rely on a mixture of silhouette [Güdükbay et al., 2013; Klinger and

Arens, 2009; Vondrak et al., 2013; Brubaker et al., 2010; Sedai et al., 2013], intensity edges,

and texture descriptors [Duff et al., 2011; del Rincón et al., 2011]. The hand tracking

algorithm presented by Wang et al. [2013] combines the silhouette, a histogram based color

model, as well as edges into a single error measure. One of the reviewed algorithms [Szczuko,

2014] applies a face detection algorithm to distinguish the front from the back of a human and

thus remove a source of ambiguity. As stated earlier, silhouettes, while being a simple feature,

encode a large amount of information about the shape of the generating model [Koenderink

et al., 1984]. This is most likely the reason why silhouettes seem to be the most common

feature used in the literature; more emphasis is put on this type of feature. Silhouette

extraction consists of segmenting the silhouette of a moving object over a background, which

results in a binary image.

Segmentation algorithms can be classified into three categories [Collins et al., 2000]:

“temporal differencing” methods, which aim to select pixels that change between frames,

“background subtraction” methods, which segment the image based on the difference be-
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tween the current frame and a learned background model, and “optical flow” methods,

that rely on detecting the continuous motion of objects over a sequence of frames. The

algorithm described by Collins et al. [2000], used for the silhouette extraction of Güdük-

bay et al. [2013] and Brubaker et al. [2010], consists of a hybrid approach combining a

static background subtraction algorithm with temporal smoothing. A slightly more complex

background segmentation algorithm is presented by Stauffer and Grimson [1999], where the

background model is learned as a mixture of Gaussian components, which solves problems

caused by periodic temporal variation in a scene and allows the model to update itself con-

tinuously. A similar type of segmentation algorithm presented by Isard and MacCormick

[2001] proposes the computation of the log-likelihood ratio of a pixel belonging to the fore-

ground or the background. This provides a probability map of how likely a pixel belongs to

the foreground. The segmentation method proposed by Elgammal et al. [2002] also provides

a foreground probability map. A compression step can be added to the segmentation stage

[Sedai et al., 2013] to reduce the amount of data and extract distinct features of the silhou-

ette. A discrete cosine transform is used to compress the data and only the most influential

components are retained. This method is somewhat similar to what is used by the JPEG

(Joint Photographic Experts Group) image compression algorithm. A simpler silhouette

segmentation method is presented by Shotton et al. [2013], where a depth camera is used to

segment foreground objects based on a depth threshold. The mixture of Gaussian compo-

nents methods described above are also stated to work well when the depth value is added

to the measurement vector [Stauffer and Grimson, 1999]. The only downside to depth-based

methods is that they require more specialized input devices. Szczuko [2014] also proposes

a simplified silhouette extraction method by engineering the environment. A green screen

background is used to allow simple chroma keying segmentation. The idea proposed by del

Rincón et al. [2011] to minimize the computational cost of silhouette extraction consists of

using a Kalman filter to track a bounding box around the region of the image containing the

human. This reduces the total number of pixels that need to be considered. There is not
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yet a definitive solution to the problem of foreground segmentation. More recent state of the

art approaches employ convolutional neural networks to segment images, but still require

human intervention [Song et al., 2018].

Finally, the pose estimation aspect of human posture tracking consists of using the mea-

surements from the tracking part as well as a set of constraints to extract the most likely

pose. Most of the papers surveyed use a particle filter [Salmond and Gordon, 2005; Thrun,

2002] approach to track the 3D posture over time. This technique has the advantage of ex-

plicitly requiring a temporal evolution model to predict how the pose evolves over time as

well as the ability to consider multiple potential solutions, which makes the tracker more

robust to perturbations. Three basic types of motion priors are used within the pose track-

ing literature. The first proposes the assumption that the evolution of a human’s pose over

time can be modeled as a Gaussian diffusion process [Sedai et al., 2013]. While this is clearly

not a valid global assumption, the proponents of this approach argue that it is valid locally

(over short intervals of time). The second approach uses a learned model based on motion

capture data to create a pose transition probability table [Klinger and Arens, 2009; Vondrak

et al., 2013]. The last type of prior is derived from a physical simulation to ensure physi-

cally valid pose transitions [Vondrak et al., 2008; Wang et al., 2013]. While each of these

methods may stand on their own, most papers use a somewhat hybrid approach to predict

pose transformation over time. Regardless of the selected motion prior, the computationally

expensive part of the problem resides in the particle likelihood estimation [Vondrak et al.,

2008]. Other published approaches to tracking the solution rely on a grid search followed by

gradient descent to find the pose [Plänkers and Fua, 2003]. This approach works well with a

lower number of dimensions, but the search space becomes intractable for tracking problems

with a larger number of dimensions. We take a closer look at such an approach in Chap-

ter 4. Other authors rely on adding stochastic characteristics to a standard particle filter

[Mitchelson and Hilton, 2003] to track problems with larger dimensionality. To improve the

accuracy of the tracking results, a method proposed by Deutscher et al. [2000] uses simulated

14



annealing to drive the solution toward a global solution. A similar annealing approach is

employed by Szczuko [2014]. Classical human tracking papers by Wren and Pentland [1998,

1999] propose a method of tracking that relies on the detection of blobs and the use of phys-

ically based constraints. Human behavior is also modeled to provide tracking constraints.

In contrast to the filter-based methods, Shotton et al. [2013] propose a system which deter-

mines the pose independently in each frame by using randomized decision forests to learn a

mapping from the input to the pose space. This method has the advantage of being compu-

tationally efficient and attains a performance of approximately 200hz, but requires a large

amount of training data to initialize the classifiers. Another novel tracking approach is pre-

sented by Belagiannis et al. [2014] where the human pose is not represented as a skeleton.

The pose is presented as a conditional random field, where each bone is represented by an

independent variable. Random sample consensus (RANSAC) can also be used as a means

to track human pose over an image sequence [Duff et al., 2010]. Physics simulation can be

used alongside RANSAC as a way to determine if a pose candidate is an inlier or an out-

lier to a simulated motion trajectory. The most common tracking problem mentioned in the

literature is caused by non-rigid deformations of the model due to certain types of clothes

(and hair). Stoll et al. [2010] describe a system capable of cloth simulation to better predict

the deformation of the silhouette of the tracked person. This method requires a very precise

skeletal model as well as a detailed 3D mesh model of the subject. While interesting, this

is somewhat beyond the scope of the current thesis, where tight fitting clothes are assumed.

The major downside of most presented tracking algorithms is the high execution cost stated

to be as high as a few minutes per frame [Wang et al., 2013].

The idea of using physics simulation as a prior for computer vision tracking has been pro-

posed since the nineties [Metaxas and Terzopoulos, 1993], where it was used as the prediction

model for a Kalman filter. Another use of simulation was presented even earlier by Pentland

and Williams [1989], who used simulation as a means to generate physically meaningful an-

imations based on a simulated environment by using modal analysis. This method, closely
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related to the finite element method of simulation, used multiple levels of representation to

distort the shape of a deformable model. Taking these ideas a step further, a system capa-

ble of generating physically meaningful animations based on a simulated environment and

simulated agents was presented by Tu and Terzopoulos [1994]. Most publications considered

in this review rely on commercially available simulation frameworks, but some rely on man-

ually solving a restricted simulation system over time [Brubaker et al., 2009, 2010]. A good

introduction to physical simulation theory and implementation is presented by Baraff [2001].

The most commonly used engines are Bullet Physics [Coumans et al., 2013], NVidia PhysX

[Nvidia, 2001], Open Dynamics Engine (ODE) [Smith et al., 2005], and the Crisis Physics

Library [Vondrák, 2005]. The comparison of multiple simulation engines proposed by Erez

et al. [2015] shows that Bullet and PhysX have the best performance, as of this writing, of

the reviewed engines, depending on the test cases. It must be noted that Erez et al. [2015]

show that simulation engines are more or less interchangeable, without needing to rewrite

a large part of the project. In order to maintain the pose of the skeleton in the physics

simulator synchronized with the recovered pose, “virtual” forces need to be applied to the

rigid bodies composing the simulated skeleton. Some algorithms use a proportional integral

derivative (PID) controller to regulate those forces [Wang et al., 2013; Vondrak et al., 2008,

2013].

An alternative, and more recent, approach to human pose tracking is machine learning

with convolutional neural networks (CNN). More commonly known as deep learning, it can be

seen as either a completely independent approach to pose tracking, or as a potential solution

to any component of traditional approaches. The deep-learning methods are formulated as

either regression problems [Toshev and Szegedy, 2014] where the output is the pose vector,

or as classification problems where, often, the 2D locations of joints are expected to be found

[Wei et al., 2016]. Many methods also formulate the problem as a combination of regression

and classification by separating the tracker into different stages working toward the solution

[Moreno-Noguer, 2017; Mehta et al., 2017]. Park et al. [2016] present a method that is
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somewhat in between by using a single network to extract both 2D and 3D joint positions

at the same time. This network consists of a few convolutional layers, common for both 2D

and 3D, followed by 2 sets of fully connected layers for the 2D and 3D tasks. While a single

network is used, the 3D estimation fully connected layers are also connected to the output

of the 2D pose estimator, which makes it an hybrid 2 stage framework. Similarly, most of

the published approaches rely on 2D joint location as a first step in the 3D pose inference

problem. The reason behind the common usage of 2D joints in recent literature is due to the

existence of off-the-shelf solutions [Wei et al., 2016]. Some approaches then rely on neural

networks to project the 2D joint positions into a set of 3D joint positions by representing

joint positions, both in 2D and 3D, as Euclidean distance matrices [Moreno-Noguer, 2017].

This reduces the effect of scale by representing points in relation to other points.

As an extension to 2D joint positions, the monocap tracker [Zhou et al., 2018] relies on

a CNN to extract heatmaps of possible positions of the joints in the 2D image. 3D poses

are then built as a weighted combination of 3D poses from a learnt dictionary using an

expectation maximization optimization process. A similar approach is presented by Zhou

et al. [2016] where 2D joint location heatmaps are used to find 3D pose, represented as a

mixture of learnt basis poses. Likewise, the Vnect tracker proposed by Mehta et al. [2017]

uses a CNN trained on annotated data from a variety of sources, including the Human3.6M

dataset [Ionescu et al., 2014], to extract the 2.5D position of joints in the image as a heatmap,

by trying to also estimate the depth. A second CNN is used to fit a 3D kinematic skeleton to

the extracted 2.5D joint locations. Temporal smoothing is also applied to obtain a temporally

stable solution. The main advantage of using a heatmap-based representation for 2D joint

location is that these heatmap images can be used directly as the input of a second CNN to

find the 3D position [Mehta et al., 2017], instead of a fully-connected network. The heatmap-

based approach can be taken a step further by representing the 3D pose as a heatmap as well

[Moreno-Noguer, 2017]. This is done by discretizing the space into fixed-size voxels and using

deconvolutional layers to estimate likelihood of each joints being located into each voxel.
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Other features such as depth [Du et al., 2016] and motion [Tekin et al., 2016] are also used

as sources for CNN-based pose extractions. Pre-existing heightmap extraction algorithms

can be used to augment the rgb image from a monocular camera into and rgbd image [Du

et al., 2016]. This rgbd image is then used as the input to the 3D estimation CNN. Raw

pixels can also be used directly as the input of the CNN. For example, the method proposed

by Grinciunaite et al. [2016] merged a sequence of rgb frames into a high dimensional block,

which is fed into the CNN. The hope is that by using multiple frames, temporal relations

are also learned by a standard CNN without the complexity of recurrent neural networks

(RNN). Rogez and Schmid [2016] demonstrate that synthetic data can be used to train a

CNN and that such a CNN can generalize to real data by replacing the background of images

containing a human in a known pose.

An even simpler framework is presented by Chen and Ramanan [2017], where 3D joint

position ground truth from motion capture datasets is used with an off-the-shelf 2D joint

detector [Bogo et al., 2016] to record correspondences between 2D and 3D. Once enough

relations are recorded, the inference problem is formulated as a simple nearest neighbor

problem.

The common thread through or most of the deep learning literature is that better results

are obtained when going from some feature to 3d pose rather than trying to learn 3D pose

from raw pixel values. While most published works rely on 2D joint positions, other features

have been successfully used. This is a good indication that using silhouettes as a feature can

yield interesting results. By first showing that variation of occluding contours are directly

correlated to changes in the articulated pose of the object generating them, we show that

silhouettes encode the underlying state of the object. This makes them prime candidates to

be used as the input of a CNN. The main advantage of our approach compared to purely

machine learning approaches is that combining a CNN with a particle filter enables us

to explicitly keep track of multiple hypotheses, which helps resolve ambiguity over time.

The particle filter also allows us to integrate more understanding of the context by using
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assumptions of how objects move. We can change some of these assumptions based on

context without the need to retrain a CNN for different conditions.

Other topics related to deep learning that are explored in this thesis include transfer

learning [Pan and Yang, 2010], which can enable the usage of pre-trained network [Simonyan

and Zisserman, 2014; Szegedy et al., 2017] as a basis for the task we are interested in.

To properly use candidates from a CNN for the particle filter, we need a way to obtain

a set of plausible candidates instead of a single result. The simplest way to obtain such

a set of particles is to add a Gaussian component to the result of the CNN, thus allowing

the particle filter to characterize the shape of the error surface around the predicted result.

This, however, does not solve the ambiguity problem. In order to obtain different candidates

directly from the network and get greater variety which may allow us to resolve ambiguity,

we can use “dropout as a Bayesian approximation” [Gal and Ghahramani, 2016] by retaining

the dropout layers when predicting results. A third way is to run the trained CNN on slightly

distorted variations of the input silhouettes.

To evaluate the performance of the system we are proposing, and be able to compare

our results with those of other authors, we need to quantify our results by using the same

metrics as those used in the literature. Most papers with quantitative results run their algo-

rithms against one of four public datasets, the HumanEVA dataset [Sigal and Black, 2006],

the Human3.6m dataset [Ionescu et al., 2014], the KTH Multiview football videos dataset

[Schuldt et al., 2004], or the silhouette database from Vlasic et al. [2008]. The HumanEVA

and Human3.6m datasets seem to be the most widely used and are probably the most inter-

esting for the current thesis as they consist of a series of video scenes where human subjects

move within a static room, which simplifies segmentation. Furthermore, Human3.6m is of

slightly greater interest as it includes segmentation sequences, which may enable us to test

the actual tracker without the need for foreground-background segmentation. We show that

the provided segmentation is similar in apprearance to what we extract from the HumanEVA

dataset. The video sequences of all of these sets are accompanied by motion tracking data
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that can be used as ground truth to quantify the error of the tracking systems. The pa-

pers that do not rely on the aforementioned datasets usually require specific measurement

modalities that may not be present in those datasets. This makes comparing the result of

these algorithms with others harder. The recently released McGill-Reparti Artificial Per-

ception Database [Phan, 2015] provides synchronized depth and intensity images from four

different vantage points as well as Vicon marker locations for multiple sequences containing

one or more humans. Another evaluation approach that we use is to render synthetic video

sequences to test the trackers. This method, presented by Shotton et al. [2013], allows direct

comparison between the original pose used to render the scene and the recovered pose from

the tracker. Szczuko [2014] proposes an error metric that consists of computing the sum

of squared differences between the pose vector from the tracker and the ground truth pose

vector. This approach is problematic as the ground truth needs to have the exact same for-

mat as the tracker pose vector. A more practical error metric proposed by Sigal and Black

[2006] consists of computing the average Euclidean distance between a set of points located

on the human model and the position of physical markers measured by the motion capture

system. This error metric provides a measurement distance between a recovered pose and

a measured pose in a single frame. Using a moving average over a video sequence provides

a way to both measure error and visualize how the error evolves over time. The standard

deviation of the instantaneous error can also be computed over a sequence of frames. This

metric is interesting because it is independent of the underlying model used for the tracking.

For this reason, it seems that most recent papers use it [Moreno-Noguer, 2017; Zhou et al.,

2018].

We begin our work by following classical computer vision approaches. Through a set of

carefully designed experiments, we demonstrate cases where these approaches succeed as well

as cases where they fail. We then integrate deep convolutional neural network techniques to

replace certain component algorithms, such as the propagation of particles in our particle

filter. Similar to approaches that use joint position heat maps as the input to the CNN used
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for 3D pose extraction, we feed the silhouette of the model being tracked as the input to the

CNN. This work results in a tracking method that blends traditional approaches and deep

learning. As stated in the literature [Yasin et al., 2016], one of the hardest parts for human

pose estimation is obtaining accurate image data with associated 3D pose. To resolve this

issue, we use synthetic data throughout our work to both train and experiment. Ultimately,

we compare our tracker to state of the art trackers by using standard datasets.

1.6 Thesis Organization

The thesis is organized in six chapters. Chapter 1 contains the introduction, which contains

everything up to this point. This includes the problem statement, the thesis, a discussion

of the inspiration for the research, a description of the contributions of our research, an

overview of the work done, and the relation of our research with the literature.

Chapter 2 provides a more technical discussion of the sub-topics involved in our research.

We start by looking at how features are extracted from images in Section 2.1. Section 2.3 then

describes how we select an appropriate metric to compare these features. Finally Section 2.4

details the tracking algorithm by presenting the motion priors, resampling strategies, and

methods to compute the results.

The third chapter presents an overview of the technical details of the implementation, a

description of the content and purpose of the companion website, and a discussion of how

we handle the different types of data involved in our complete experimental framework.

The next two chapters describe the experiments we use to evaluate our approach and

report their results. First, Chapter 4 uses purely synthetic, non human data, to both demon-

strate validity of our proposed tracking algorithm and tune various parameters by observing

their influence on the performance of the global system. Chapter 5 then applies our approach

to human data to show its limits. Chapter 5 is also where we introduce machine learning

approaches to overcome certain of those limits.
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Finally, Chapter 6 presents a summary of the results in Section 6 and provides a roadmap

for future work that may improve the performance of our tracker in Section 6.1.
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Chapter 2

Theory & Methodology

This chapter details the main components of the research involved in the implementation of

a pose tracking framework. We start by detailing the type of features we use and how we

extract them from the input images. We then determine how well these features correlate to

the information we want to extract and explore different metrics that can be used to evaluate

this correlation. We then investigate how these measurements can be integrated over time

to estimate the state of the observed system. We end this chapter with a discussion of how

all of data we are using can be represented.

2.1 Feature Extraction

As stated in the introduction, we opt to rely on silhouette as the main feature. There are

multiple reasons and assumptions that led to the choice of this feature.

The first reason is based on the fact that a silhouette is the projection of a 3D object on

a 2D plane. This projection is usually a non-injective surjective function, that is, with a set

of camera parameters a 3D shape will cast a known silhouette given, but a given silhouette

can be generated by multiple 3D shapes. However, there is a direct correlation between the

2D projection and the 3D shape of the object. This is why shape from silhouette algorithms

[Laurentini, 1994] can be used to estimate the “visual hull” of an object from multiple views
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of the silhouette. This visual hull is the intersection of the projection cones between the

3D object and their 2D silhouettes. Given enough viewpoints, this visual hull becomes

similar to a piecewise convex hull of the 3D model. We thus make the assumption that

the silhouette should encode enough information about the shape of humans to enable us to

make predictions based on it. We will test this assumption in Section 2.3.

The second assumption is that the use of silhouettes removes ambiguity caused by vari-

ations in textures and colors. The information we are interested in is the pose. While this

cannot be directly observed, we posit that the occluding contour of the model contains more

information about its pose than texture does.

The last reason for selecting the silhouettes as a feature is a practical one. We choose

silhouettes because there are multiple well known algorithms and methods to extract them

from images of different types. This section will discuss some of these algorithms.

The selection and implementation of the silhouette extraction step is closely related to

the results of the experiments that are presented in Section 2.3. A high level overview of the

silhouette extraction process is shown in Figure 2.1.
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Figure 2.1: Overview of the silhouette extraction process

The foreground segmentation step relies on a learned background model consisting of a

Gaussian mixture model for each pixel [Stauffer and Grimson, 1999], which provides a binary

segmentation image. The post-processing stage is where we extract the actual silhouette. As

we are evaluating metrics that rely on a chain-coded representation of object shape in Section
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2.3, we also need to compute a chaincode representation of the silhouette. A simple example

of a segmented binary image is shown in Figure 2.2(a). A labeling algorithm is then used to

find individual blobs in the images, as colored in Figure 2.2(b). Depending on the type of

background, we grow the foreground region by a small number of pixels to merge foreground

regions close to one another and ensure that the complete silhouette is detected properly.

The silhouette is extracted by finding the largest contiguous foreground region and pruning

the other regions (Figure 2.2c). The chain-code is computed by first selecting a boundary

pixel, as seen colored red in Figure 2.2(d). We arbitrarily choose to use the pixel closest to

the top-right corner of the image as the start of the chain-code. Traveling clockwise along the

border, as shown in 2.2(e), provides the chain-code as a linked list of border pixel coordinates.
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Figure 2.2: Example Binary image (a) being labeled (b), then pruned (c). Given a start
pixel (d), the chain code representation of the outline is computed (e).

Figure 2.3 provides a example of the silhouette extraction process on a frame from the

HumanEVA dataset [Sigal and Black, 2006]. Given a captured input frame (Figure 2.3(a)),

the background model (Figure 2.3(b)) is used to label pixels as either foreground or back-

ground and obtain a binary foreground image (Figure 2.3(c)). A labeling algorithm (Figure

2.3(d)) is then used to find and extract the largest foreground blob (Figure 2.3(e)).
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(a) Input Frame (b) Background Model

(c) Segmentation (d) Labeling (e) Output

Figure 2.3: Example feature extraction with frame 100 of the HumanEVA [Sigal and Black,
2006] Jog 2 sequence

While the algorithm described earlier performs adequately in most cases, there are some

issues that affect certain frames. Figure 2.4 provides sample frames from the HumanEVA

dataset where three common issues are encountered. Shadows, as seen in Figure 2.4(a), are

a very important issue, depending on the lighting configuration and can corrupt parts of the

silhouette as they are usually detected as foreground. Figure 2.4(b) shows a frame where a

silhouette is not completely extracted, resulting in a missing limb. This occurs when a region

of pixels in the tracked subject is similar enough to the background model and are thus not

detected as foreground. This causes a hole in the silhouette preventing the full extraction.

Slight camera motion due to vibration can result in cases similar to that of Figure 2.4(c),

where a part of the background gets labeled as foreground. Sudden lighting changes can also

result in mislabeling similar to Figure 2.4(c).

To prevent these issues when experimenting with the tracking system of Section 2.4, we

chose to record our own testing sequences with controlled lighting in front of a green screen.

The steps involved in extracting the silhouette are similar to those of Figure 2.3, but we can
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(a) Shadows (b) Labeling Error (c) Camera or lighting Error

Figure 2.4: Segmentation issues in various HumanEVA [Sigal and Black, 2006] sequences

use off-the-shelf video editing tools to obtain the initial segmentation. Figure 2.5 provides a

graphical representation of the modified process.
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Figure 2.5: Green screen silhouette extraction process

The major difference is the chroma keying that replaces the Gaussian mixture background

model and the addition of a masking stage to remove scene elements that lie outside of the

green screen. The chroma keying is done in Natron, a free and open-source video compositor.

The Natron graph used for the chroma keying step is shown in Figure 2.6.

Figure 2.6: Natron graph used for chroma keying
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Figure 2.7 shows a frame as it is processed through the different stages shown in Figure

2.5 as well as the manually created mask (Figure 2.7(c)) used for the masking stage.

(a) Input Image (b) Chroma Keyed (c) Mask

(d) Masked Image (e) Labeled Foreground (f) Output Silhouette

Figure 2.7: Segmentation issues in various HumanEVA [Sigal and Black, 2006] sequences

While not practical for general application of the tracking algorithm, the use of chroma-

keying provides a much cleaner segmentation which allows more flexibility during the testing

process. Figure 2.8 presents a selection of binary silhouettes from our green screen sequences.

Figure 2.8: Sample frames from our green screen sequences
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2.2 Human Model

To enable experimentation, we construct a deformable mesh model of a human with an

internal skeletal structure. To this end, Figure 2.9 and accompanying Table 2.1 provide

a graphical representation of the skeleton and a list of the joints as well as the number of

degrees of freedom for each. It is important to note here that there are 3 redundant degrees

of freedom at the root joint. This is because 3 DOF are used for the global model rotations

which are used by both the particle filter tracking the root position and the filter tracking

the pose. The pelvis also accounts for local rotations around the pelvis. In most cases these

redundant DOF could be merged into one, but the implementation is simpler when kept

separate. Figure 2.10 provides examples of rendered silhouettes with different poses from

our model.
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Figure 2.9: Proposed skeletal model

Index Parent Name DOF
00 – Root / Pelvis 6
01 00 Abdomen 1
02 01 Thorax 3
03 02 Head 3
04 00 Right Hip 0
05 04 Right Thigh 3
06 05 Right Shin 1
07 06 Right Foot 1
08 00 Left Hip 0
09 08 Left Thigh 3
10 09 Left Shin 1
11 10 Left Foot 1
12 02 Right Shoulder 0
13 12 Right Upper Arm 3
14 13 Right Forearm 2
15 14 Right Hand 2
16 02 Left Shoulder 0
17 16 Left Upper Arm 3
18 17 Left Forearm 2
19 18 Left Hand 2

Total DOF 37

Table 2.1: Proposed human skeletal structure
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We rely on MakeHuman [Team, 2001] to create a mesh model that we will be able to deform

based on the pose of the skeleton. The skeleton, coupled with our rendering system and a

silhouette shader allow us to generate virtual silhouettes, such as the three example silhouetes

shown in Figure 2.10.

(a) (b) (c)

Figure 2.10: Example rendered silhouettes

2.3 Metric selection

While we focus on the application of shape matching to the task of human posture tracking

over image sequences in the current research, the evaluation of the image similarity metrics

should be useful for any application that requires comparisons of object outlines.

Most human tracking and human pose extraction papers describe the metric they use to

measure distance between observed data and expected data, but few provide the rationale

behind the choice of one metric over others and even fewer provide comparisons to other

metrics. We now provide a comparison of widely used metrics and provide a better under-

standing of which types of metrics are more appropriate for the task of comparing human

silhouettes. The intention is thus to implement these metrics and compare them, from both

theoretical and practical standpoints.

A survey of some shape comparison metrics is provided by Veltkamp [2001]. While there

is some overlap between the metrics presented here and those by Veltkamp [2001], we go

beyond simply describing the selected metrics and systematically evaluate them. A survey of
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silhouette metrics applied to human shape is presented by Poppe and Poel [2006], but only

evaluates three metrics and lacks a definition of the region of convergence of these metrics.

When comparing metrics, many methods employ a specific dataset to measure the met-

ric’s performance. A good example of this practice in an other domain is presented by Cohen

et al. [2003]. The application of shape matching to human tracking involves a variety of

other components that can skew results; we thus choose to evaluate metrics without relying

on a specific dataset and instead use synthetic data.

Most of the results presented in this section have been published at the 13th conference

on Computer and Robot Vision [Cormier and Ferrie, 2016], but some additions that were

late for the publication were added.

2.3.1 Evaluated Metrics

This section presents an overview of the studied metrics, providing a general description of

each. A more in depth look at each metric can be found in the papers referenced.

Many of the methods presented by the original authors are neither translation nor scale

invariant; we attempt to alleviate these problems by cropping the silhouettes and scaling the

resulting images to a uniform size. For methods that rely on a chain-coded representation

of the silhouette edge, we resample the chain code to a fixed number of points. These

constraints remove some notion of scale and translation from the metrics, thus simplifying

comparison between silhouette comparison metrics.

Hu Moments [Rosales and Sclaroff, 2000; Hu, 1962]

Hu moments are a set of image descriptors that are simple to compute and represent many

aspects of the evaluated shape such as area, centroid, and orientation. For example, the

raw moment of an image are computed as shown in Equation 2.1, where I(x, y) is the pixel
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intensity at the given x and y coordinates,

Mij =
∑
x

∑
y

xiyjI(x, y) . (2.1)

These raw moments can be used to find the area as M00 and the centroid as

{x̄, ȳ} =

{
M01

M00

,
M10

M00

}
. (2.2)

From the raw moments, we can use Equation 2.3 to compute the translation invariant central

moments as

µpq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qI(x, y) . (2.3)

From these central moments, we can build up higher level moments that are scale and

rotation invariant. The equations for these can be found in the original paper presenting

the Hu moments [Hu, 1962]. While image moments can cause a lot of ambiguity, they can

be used to successfully match silhouettes with classes of known pose [Rosales and Sclaroff,

2000]. They estimate pose by using an expectation-maximization algorithm to cluster the

Hu moments for a set of pose classes. The main advantage of this metric is that negative

space within the main shape blob is properly identified as the metric is computed on the

pixel values instead of on the border pixels. Figure 2.10(a) provides an example of two large

negative space regions inside a silhouette. Once the Hu moments are extracted, the distance

between two silhouettes is computed as the Euclidean distance between the moment vectors.

Pixel Count [Wang et al., 2013; Güdükbay et al., 2013]

Another simple metric involves the computation of the number of pixels that differ between

two silhouettes. This method requires good camera calibration or image matching, as both

silhouettes need to be aligned. Cropping the bounding box of the silhouette and scaling to

a common size, as stated previously, also helps in aligning silhouettes. This metric can also
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handle negative space within silhouettes, as discussed in the description of the Hu moments.

For two silhouettes S1 and S2 represented by binary images of dimensions m by n, we can

compute the distance with Equation 2.4, where ⊕ is the exclusive or (xor) operation, and

S[x, y] is the value at pixel location (x, y). Figure 2.11 provides a graphical example of the

computation of the exclusive or version of two binary silhouette images S1 and S2.

S1 S1 ⊕ S2 S2

Figure 2.11: Example computation of the exclusive or version of two binary silhouette images
S1 and S2.

D(S1, S2) =
n∑

x=0

m∑
y=0

S1[x, y]⊕ S2[x, y] . (2.4)

Chamfer Distance [Howe, 2004]

This metric is computed solely from the contour of the silhouette. To do so, a chain code

representation of the silhouette edge is extracted by traveling along the edge of the silhouette

and recording the visited pixels. The distance between two chain code sets S1 and S2 can

be computed via the modified Haussdorf distance defined in Equation 2.5, where d(p, q) is

the Euclidean distance between two points in the chain codes. A proper Hausdorff distance
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would take the maximum instead of the sum,

D(S1, S2) =
∑
p∈S1

min
q∈S2

d(p, q) . (2.5)

Turning Angle [Howe, 2004]

This metric requires the computation of a turning angle diagram, which is generated by

recording the angle between successive points in the chain code. This diagram is said to

better encode the shape of the silhouette than simply using the chain code point locations.

The distance between two silhouettes can be computed as the sum of squared differences

between the turning angle representations of each silhouette.

Distance Signal [Dedeoğlu et al., 2006]

The chain code representation of the contour is used for this metric, but an extra piece of

information is added. Instead of simply looking at the position of the contour points, this

metric considers the distance between each point and the center of mass of the silhouette.

The center of mass (x̄, ȳ) of a silhouette represented by a binary image Si can be computed

either with Equation 2.6 or via the central Hu moment,

x̄ =

∑n
x=0

∑m
y=0 xS[x, y]∑n

x=0

∑m
y=0 S[x, y]

, ȳ =

∑n
x=0

∑m
y=0 yS[x, y]∑n

x=0

∑m
y=0 S[x, y]

. (2.6)

The distance between two shapes S1 and S2 with precomputed distance signals DS1 and

DS2 is computed as the sum of absolute differences, as shown in Equation 2.7, where n is

the number of points in the chain code,

D(S1, S2) = D(DS1, DS2) =
n∑

i=0

∣∣∣∣DS1[i]−DS2[i]

∣∣∣∣ . (2.7)
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Shape Contexts [Belongie et al., 2002; Mori and Malik, 2006]

Shape contexts are 2D histograms that can be computed at any point along the edge of a

silhouette. These histograms encode the relation between the point at which it is computed

and all other points of the chain code by recording the angle and distance to the other

points. The shape context implicitly encodes the local curvature and shape of the silhouette.

This metric is translation invariant by design and can be made scale invariant by scaling the

silhouettes and resampling the chain codes to a fixed number of points [Agarwal and Triggs,

2006]. The “distance” between two shape contexts p and q is computed by the use of the

following χ2 test:

d(p, q) =
1

2

K∑
k=1

[hp(k)− hq(k)]
2

hp(k) + hq(k)
, (2.8)

where hi(k) is the value of the kth bin of the histogram at point i.

Computing a distance between two silhouettes involves finding a one to one mapping

between the points on each silhouette that minimizes the sum of distances between the two

sets [Belongie et al., 2002]. This type of matching is a full bipartite graph combinatorial

optimization problem that can be solved via the Kuhn–Munkres algorithm [Kuhn, 1955].

A computationally simpler method of computing the distance between two chain code

sets is to use Equation 2.5. This alleviates the need to run the graph optimization step at

the cost of not obtaining a one to one mapping. We refer to this simplified version as a

greedy set matching strategy.

2.3.2 Metric Evaluation

Before comparing each of the metrics, one must first determine what the characteristics of a

good metric are. Veltkamp [2001] presents the following three desirable properties for shape

matching metrics:

• Metric Property: The distance between any two silhouettes should always be pos-
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itive and a minimum distance should only be obtained when comparing a given sil-

houette to itself. The distance metric should also respect the triangle inequality, as

presented in Equation 2.9,

D(S1, S2) +D(S2, S3) ≥ D(S1, S3) . (2.9)

• Robustness Property: Distance measures should be robust to the kind of noise

that are often encountered in computer vision problems. Such sources of noise include

discretization errors, blur, and occlusion.

• Invariance Property: The metric should be invariant to classes of transformations

that are expected to be encountered.

Note that the invariance property is very important for image matching, but less so for

the task of human posture tracking. This is due to the fact that we extract a subwindow

containing the silhouette, which we scale to a fixed size. This reduces the effect of translation

and scale on the silhouette. The human silhouettes we observe are also mostly standing

upright, so rotation is not as present as when tracking other types of objects.

A stronger criterion can be added to the Metric Property by requiring metrics to increase

monotonically as we move away from the correct solution; however, it is not expected that

all metrics behave that way over the entire pose space. We can sample the error manifold to

determine the size of the neighborhood around the correct solution where the metric behaves

monotonically. To test this, we sample a given number of points at a distance ‖∆‖ and

compute statistics of the recorded errors. By gradually increasing ‖∆‖, we obtain a curve

of how each metric behaves as a function of distance in pose space. From this curve, we can

determine if each error respects the Metric Property.

We expect to see three basic metric behavior types, as represented by example plots in

Figure 2.12. The first (Figure 2.12(a)) is a metric that does not respect the Metric Property

as the error does not increase with ‖∆‖, and is thus not an applicable metric. As all metrics
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that are tested herein have already been shown to work by the original authors, none of

the results should resemble Figure 2.12(a). The second and third types of metrics (Figures

2.12(b) and 2.12(c)) are both valid with respect to the properties listed previously, but the

metric in 2.12(c) is superior in cases where a gradient descent method is used to find the

solution as the error increases linearly over the range of ‖∆‖.
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Figure 2.12: Three types of possible metric behaviors

Interestingly, the plot shown in Figure 2.12(c) is simply a linear plot of the distance in

pose space (Error=‖∆‖). This allows us to compare metrics by measuring if the metric

values correlate well with the distance in pose space. As we are rendering the poses, we

know the value of ∆21 exactly. This makes it possible to directly compute the Pearson

product-moment correlation coefficient [Pearson, 1895] between D(S1, S2) and D(P1,P2).

The Robustness Property was investigated by testing the metrics with the addition of

noise. We simulate two common problems found in human tracking applications: ground

shadows and camera noise. These sources of noise change the overall shape of the silhouette

and cause a reduction in the performance of most metrics. Figure 2.13 shows the silhouettes

for six test cases that are considered.

• Ground Shadows (Figures 2.13(b) and 2.13(e)): While there exist a multitude of algo-

rithms to segment the silhouette from an image, most of them suffer from difficulties

dealing with shadows [Moeslund et al., 2006]. A blob is thus added below the feet of

the silhouette to simulate shadows cast on the ground.

• Camera Noise (Figures 2.13(c) and 2.13(f)): Camera noise may also affect the accuracy

of the silhouette segmentation. This type of noise also affects the segmentation and
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may cause mis-labeled pixels that result in variations along the edge of the silhouette.

To simulate this, we can randomly displace pixels along the edge.

The invariance property can be explored by testing the metrics under different scene

configurations. We run two sets of tests, one with the 3D human model facing the camera

(Figures 2.13(a), 2.13(b), and 2.13(c)) and the other with the camera looking at the model

sideways (Figures 2.13(d), 2.13(e), and 2.13(f)).

(a) (b) (c)

(d) (e) (f)

Figure 2.13: Reference silhouettes used for the tests, viewed from the front (a,b,c) and from
the side (d,e,f). Shadows (b,e) and noise (c,f) are added to test robustness.

2.3.3 Experimental Methodology

As stated earlier, the initial experiment involved recording the values of the metrics as we

move away from the correct solution. To compute the distance ‖∆‖ = D(S1, S2) between

two poses, we use the L2 norm of the difference between the S1 and S2, as shown in Equation
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2.10. This distance could be measured in degrees, but as we are dealing with normalized

poses (all values of the pose vector are between 0 and 1), the actual units are related, but

not exactly degrees, we thus call the unit “normalized pose space unit” (NPSU). As we are

looking at a 37 degrees of freedom model, the summation goes from 1 to 37.

‖∆‖ = D(P1, P2) =

√√√√ 37∑
d=1

|P1d − P2d|2 (2.10)

The absolute maximum distance between two poses occurs when P1 = [0, 0, ..., 0] and

P2 = [1, 1, ..., 1], when we obtain ‖∆‖ = D(P1,P2) = 6.08. To simplify testing procedure,

we kept the values of the first 3 DOF constant at zero. This choice eliminates the effect of the

translation components, which have little to no effect on the rendered silhouettes because of

the scaling and cropping discussed earlier. For the first few tests, we set P1 = [0.5, 0.5, ..., 0.5]

as a reference pose and vary P2, which means that the maximum distance between P1 and

P2 is halved to 3.04.

Metric Values are thus recorded as ‖∆‖ is increased from 0 to 3.04. For each increment

step of ‖∆‖, a few hundred sample measurements of the metrics are computed in order

to calculate the minimum and maximum values of the error as well as average value and

standard deviation. These values are presented in Figure 2.17, with the average as a black

line, error bars representing the standard deviation and a gray-shaded region to show the

range of metric values between the minimum and maximum. From these results, it is possible

to determine the region in which each metric is monotonically increasing and record it in

Table 2.2. The Pearson product-moment correlation coefficient between the error function

and ‖∆‖ is computed to further describe the behavior of the metric. To do so, the error

manifold of each metric is sampled at a few hundred randomly selected locations within

‖∆‖ ∈ [0,M ] to generate a set of measurements X. For each of these measurements,

the value of ‖∆‖ is recorded to obtain a set Y . The correlation between these two sets is

computed according to Equation 2.11. The correlation coefficients are also recorded in Table
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2.2.

ρX,Y =
cov(X,Y )

σXσY

(2.11)

To obtain fair results, the value of M is selected as the largest monotonically increasing region

of the metrics in the given test. For example, the correlation coefficients reported for the front

of the clean case (Column 3) of Table 2.2 are computed with M = max(0.53, 0.61, 0.76) =

0.76.

The other measure that is recorded to compare the metrics is the time required to compute

the distance between two silhouettes. Similar to the other tests, the distance between a

few thousand silhouettes is computed and the execution time is recorded. This allows the

computation of the average time and standard deviation. The absolute values alone have

little meaning as they are mostly dependent on the hardware used, but the relation between

them provides an indication of performance. These results are also be reported in Table 2.2.

To get a more precise understanding of how the metrics behave, we also conduct a set

of experiments that records the error values as we move a distance δ from the reference

pose along each DOF independently. While the full set of results is not reported here, it

is available on the companion website. Figure 2.14 demonstrates what we would find in an

ideal case, where the metric increases proportionally to the pose distance.
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Figure 2.14: Ideal value of a metric between two poses as the distance between those two
poses changes. The distance is measured as described in Equation 2.10

The reality is that none of the metrics we are evaluating behave ideally in all cases. For
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example, Figure 2.15 shows how the pixel count metric behaves when only the 25th degree

of freedom is moved. This behavior, while not ideal, demonstrates that the metric is a good

representation of the change in distance, when the distance is within a small region around

zero.
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Figure 2.15: Value of the pixel count metric between two poses as the distance between those
two poses changes, while changing a single component of the pose vector. The distance is
measured as described in Equation 2.10

Occlusion and ambiguity can also result in metric behaviors that are not smooth and

change abruptly. Such an example is shown in Figure 2.16. In this example, the metric still

behaves properly, but only in a very small region around zero.
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Figure 2.16: Value of the pixel count metric between two poses as the distance between those
two poses changes, while changing a single component of the pose vector. The distance is
measured as described in Equation 2.10

The final test, which acts as a validation, involves once again the measurement of the

metric values as a function of distance in pose space. For this experiment, both poses are

41



Clean Floor Shadow Noise
Monotonic Correlation Monotonic Correlation Monotonic Correlation Run Time (µs)Region Coefficient Region Coefficient Region Coefficient

Metric Front Side Front Side Front Side Front Side Front Side Front Side Average Std.Dev.
Hu Moments 0.53 0.38 0.168 0.337 0.08 0.30 0.117 0.201 0.08 0.38 0.039 0.338 93.70 19.60
Pixel Count 0.61 0.46 0.730 0.746 0.61 0.46 0.747 0.741 0.61 0.76 0.727 0.748 0.59 0.08
Chamfer Distance 0.61 0.76 0.688 0.718 0.61 0.76 0.686 0.709 0.61 0.76 0.681 0.714 4300.88 1071.97
Turning Angle 0.61 1.37 0.672 0.700 0.00 0.61 0.415 0.666 0.08 0.76 0.099 0.572 37.22 6.28
Distance Signal 0.76 0.76 0.796 0.743 0.00 0.76 0.208 0.658 0.76 0.76 0.797 0.718 0.42 0.06
Shape Contexts
Greedy Matching 0.61 0.46 0.714 0.684 0.61 0.46 0.691 0.659 0.61 0.46 0.703 0.681 30.75 6.86
Bipartite Matching 0.61 0.46 0.744 0.692 0.61 0.46 0.728 0.664 0.61 0.46 0.726 0.677 38.07 6.73

Table 2.2: Summarized results of the similarity metric experiments, both monotonic region
size and correlation coefficients are measured in pose distance, as described in Equation 2.10.

selected randomly, instead of keeping the reference pose constant. This should demonstrate

how the metrics behave on arbitrary poses and thus confirm wether the results obtained in

the previous tests are a good representation of the overall behavior of each metric.

2.3.4 Results & Conclusions

Figure 2.17 shows the plots of the error versus the pose-space distance for each metric,

when applied to the first tested case with the reference silhouette shown in Figure 2.13(a).

The other plots have not been included because of space constraints, but can be found

on the aforementioned website. The relevant information from the plots are recorded and

summarized in Table 2.2.

As stated earlier, the goal here was not to determine whether the metrics are valid in

general cases, as this has already been done by the original authors, but to systematically

determine how appropriate each metric is to the specific task of articulated human posture

tracking from silhouettes.

The first result that stands out from Table 2.2 is that Hu moments only increase mono-

tonically over a very small region of the pose space. While they may be good metrics for

matching between shape classes where the value of the metric changes by a large value, they

are not appropriate for matching slight variations in the pose of humans. The monotonic

region measure also allows us to notice that the turning angle metric is very sensitive to the
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Figure 2.17: Results for the basic case observed from the front. The error values recorded
here are the recorded metric values. The exact units of each metric are irrevelant here as
we are interested in the behavior of the metric. Results of the other considered cases are
available on the website, and are summarized in Table 2.2.
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presence of noise or shadows. Similarly, the distance signal is seen not to be robust in the

presence of shadows. Disregarding these three metrics, we are left with the pixel count, the

chamfer distance, and the shape contexts. The chamfer distance is monotonic over a larger

region than the other two, especially when the human is not facing the camera. However,

the pixel count metric has a higher correlation coefficient in all tested cases.

The last element in Table 2.2 that can be used to compare the metrics is the runtime.

The first interesting result to note here is that while the type of matching for shape contexts

has little to no effect on monotonicity, and only a marginal effect on the correlation to pose-

space distance, there is a 20 percent difference in the run times between the two methods.

The trade-off between the performance of the metrics and the execution time difference leads

us to believe that the added complexity of full bipartite graph matching is not necessary to

obtain adequate results. There is a sharp contrast between the run times of the pixel count

metric and that of the chamfer distance. The fact that the chamfer distance has a large run

time was expected as it is the only one of the algorithms with an O(n2) complexity with n

being the number of points in the chain code. The complexity of the pixel count is O(n)

with n the number of pixels in the silhouette. The difference in run time is further explained

by the fact that the pixel count only requires integer and bitwise operations, whereas the

chamfer distance relies on floating point distance computation.
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Figure 2.18: Value of the chamfer distance metric between two poses as the distance between
those two poses changes, while changing a single component of the pose vector. The distance
is measured as described in Equation 2.10
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By looking at the results from the test where we move along each DOF independently

and comparing the plots for the pixel count and chamfer distances, we can see that the pixel

count distance varies more smoothly with δ and presents less small variations (that appear

as noise on the curves), which further indicates that the pixel distance is more appropriate

for our purposes. This can be seen when comparing the plot in Figures 2.15 and 2.18. Again,

the complete set of results is available for inpection on the companion website.

The last step before concluding is to test whether the metrics behave in the same way

for any given poses. We confirm this by generating a set of random pairs of poses at known

distances and record the resulting distances. Figure 2.19 shows the result of this experiment

for the pixel count distance and Figure 2.20 shows the results for the chamfer distance. Each

point in these scatterplots represent a pair of random poses. When we compare these two

scatter plots with the corresponding curves in Figure 2.17, we observe the same behavior

and roughly the same metric values. This confirms that both metrics behave in a consistent

manner for any pose pair. The plots for the other metrics are not as relevant here, but are

available for viewing on the companion website.
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Figure 2.19: Pixel count metric value for pairs of random poses.

To conclude, the key finding of this investigation is that all of the metrics discussed

perform reasonably well in ideal conditions, but only the pixel count metric, the chamfer
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Figure 2.20: Chamfer disatnce metric value for pairs of random poses.

distance, and the shape contexts are robust to the types of noise that are commonly encoun-

tered in human posture tracking applications and are thus appropriate for such applications.

Furthermore, with a higher correlation to pose-space distance and a lower computation time,

the pixel count distance is deemed to be slightly superior to the other metrics.

These conclusions were arrived at by producing a systematically varied dataset under

experimental control and probing the strengths and weaknesses of the metrics, rather than

relying on a particular existing (and limited) dataset.

Another aspect we were hoping to use these results for was to determine if the pose space

could be easily discretized without losing accuracy. The results provided in Figure 2.17 show

that even the slightest perturbation in the pose vector results in noticeable changes in the

metric value. This indicates that any level of useful discretization would result in a loss of

precision.

2.3.5 Silhouette and Depth

A possible improvement over using the pixel count is to consider depth information in ad-

dition to silhouette image, if this information is available. Figure 2.21 provides an example

of a silhouette image with depth information. The segmentation of the silhouette can be
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(a) (b)

Figure 2.21: Silhouette (a) and depth image silhouette (b)

executed using the algorithm described in Section 2.1, either with or without the addition

of depth to the RGB vector used for the Gaussian mixture model.

To experiment with the addition of depth, we compute the sum of squared differences

(SSD) between the captured and segmented depth image and the depth buffer of the rendered

silhouette. The mathematical form of the computed SSD is shown in Equation 2.12, for two

depth images D1 and D2 of dimensions m by n,

D(D1, D2) =
n∑

x=0

m∑
y=0

(
D1[x, y]−D2[x, y]

)2
. (2.12)

Performing the same experiments as described for non-depth metrics to determine the

size of the monotonically increasing region and the correlation coefficients yields the two

plots shown in Figure 2.22 and the numerical results reported in Table 2.3.

Clean Floor Shadow Noise
Monotonic Correlation Monotonic Correlation Monotonic Correlation

Region Coefficient Region Coefficient Region Coefficient
Metric Front Side Front Side Front Side Front Side Front Side Front Side

Pixel Count 1.064 0.760 0.680 0.725 1.216 0.760 0.654 0.725 0.684 0.760 0.684 0.724
Depth SSD 0.988 0.912 0.645 0.682 0.760 0.912 0.605 0.680 0.760 0.912 0.626 0.670

Table 2.3: Results of the metric evaluation tests for depth
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Pixel Count Error vs Depth Image SSD Error vs
Distance from Correct Pose Distance from Correct Pose
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Figure 2.22: Silhouette (a) and depth image silhouette (b)

Looking at the size of the monotonic regions provided by both depth and non-depth

metrics, we see that there is no significant difference in performance gained by considering

depth when the model is viewed from the front. When viewed from the side, however, using

depth provides a significantly larger monotonic region which would translate into a more

robust metric and thus better performance, as it attenuates the effect of ambiguity. The

most important result is the small monotonic region for the depth SSD metric when viewed

from the front in the presence of floor shadows, as they greatly increase the SSD, thus skewing

results. While the pixel count metric has a slight edge in terms of correlation coefficient

in all cases, the correlation coefficients are very similar whether depth is considered or not.

The conclusion here is that the addition of depth can help in certain cases, but the difference

in results is not significant. More research may be required to determine if there exists more

efficient depth-based metrics than a sum of squared differences. However, metrics that do

not require depth present adequate results without requiring specialized hardware.

The results presented in this section confirm our assumption that continuous changes in

the pose vector result in continuous changes in the silhouette, within a small region around

a pose (within approximately 0.5 distance in normalized pose space). This means that once

a reasonably accurate solution is found, we can either use gradient descent to refine this

solution or use a filtering approach to improve accuracy and maintain it over time. The

initialization part of the next section discusses different strategies that can be used to obtain
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this initial solution. Silhouettes are thus a viable feature to use for the purpose of human

pose tracking.
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2.4 Tracking

Now that we can extract features and have a metric to compare them, we look at how to

keep track of pose vectors by integrating information over time.

For this task, we rely on a classical particle filter approach. The canonical formulation

of a particle filter is shown in Equation 2.13. In this equation, xt is the state vector, which

in the case of human tracking, is the pose vector we are interested in finding. The term y1;t

is the sequence of measurements from time 1 to time t, which in our case are the extracted

silhouettes since the start of the video sequence. The likelihood term is the probability of

observing a given measurement yt, given a state vector xt. The likelihood is where we apply

the silhouette comparison metric described earlier. The temporal prior is where we need to

model the expected change in state vector between frames. Finally, the posterior is simply

the result from the previous frame.

p(xt|y1:t)︸ ︷︷ ︸
Posterior at t

∝ p(yt|xt)︸ ︷︷ ︸
Likelihood

∫ Temporal Prior︷ ︸︸ ︷
p(xt|xt−1)

Posterior at t−1︷ ︸︸ ︷
p(xt−1|y1:t−1) dxt−1︸ ︷︷ ︸

Predictive Density

(2.13)

A practical description of a generic particle filter, provided by Salmond and Gordon

[2005], shows that there are five main aspects that need to be considered when thinking about

particle filtering: initialization, particle weighting, particle propagation, particle resampling,

and result computation. We will now go over each of these components to describe them in

more detail.

2.4.1 Initialization

For any particle filter to keep track of something correctly, a proper initialization is required.

The better the initialization, the more rapidly the filter will converge to the correct solution.

In simple cases, a random sampling of the search space is enough for the filter to converge.

For more complex systems, a large number of random particles would be necessary for

convergence. A more accurate initial hypothesis is thus desirable for proper convergence.
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We use a gradient descent method, starting from known common poses, to generate a set of

initial candidate poses. We will see through the experiments in Chapter 4 that this approach

is appropriate for simpler models, but the experiments in Chapter 5 show that it only works in

ideal cases when working with more complex models. For such models, we turn to machine

learning to obtain the initial pose estimate. Chapter 5 provides a discussion of the network

architecture we use to generate pose candidates. We use the network to detect key poses

and the particle filter is used for interpolation between the detected keyframes.

As a quick experiment to determine if a CNN can capture the mapping between pose and

silhouette, we designed a simple network with the architecture shown in Figure 2.23. We

trained this network with synthetic silhouettes generated from random pose vectors. More

information about the generation of silhouettes for training will be presented in Chapter 5.

We then tested the network by giving it a pose vector and compared the output silhouette

generated by the network to the rendered silhouette generated from the same vector. Figure

2.24 presents comparisons between the output of the network, in the bottom row, and the

ground truth silhouettes, in the top row. This simple experiment shows that even with a

relatively simple network architecture, we can learn the mapping between pose and silhou-

ette. Chapter 5 will present a network that does the opposite by estimating the pose vector

from the silhouette. We will discuss in Section 6.1, the possibility of replacing the renderer

from our framework with a generative neural network such as the one presented here.

2.4.2 Particle Weighting

Figure 2.25 provides an overview of the steps involved in computing the likelihood of a pose

candidate in the form of a block diagram. To re-iterate, each particle in the filter is a pose

candidate. As such, each pose candidate represents a possible configuration of the mesh

model and can be used to generate an artifical silhouette, as described in Section 2.2. The

first step in computing the weight of a candidate particle thus consists in deforming the mesh

model in accordance with the pose vector. By rendering a silhouette of the model we can
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Figure 2.23: Experimental Deconvolutional Neural Network architecture.

Figure 2.24: Example comparisons between the output of the network (bottom row) and
ground truth silhouettes (top row).
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then apply the similarity metric described in Section 2.3 to obtain a likelihood score that we

can use as a weight.

Input Data

Likelihood computation Output Data

Camera

Calibration

Pose

Candidate

Extracted

Silhouette

Model

Deformation

Silhouette

Renderer

Similarity

Metric

Skeletal

Model

Shader

Program
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(Score)

Figure 2.25: Block diagram of the particle weight computation process

Some approaches, such as the one presented by Canals et al. [2009] propose different

ways to map the similarity measure into meaningful particle weights. All of the proposed

methods rely on setting the particle weights to a value proportional to the similarity metric.

To accentuate the convexity of the probability distribution, the particle weights wk can be

computed from the exponential of the similarity measure, as shown in Equation 2.14, where

zkt is the similarity measure of the kth particle at time t,

wk
t =

exp(1− zkt )∑N−1
k=0 exp(1− zkt )

. (2.14)

The fractional part of Equation 2.14 (dividing by the sum of the weights) is there to

normalize the particle weights so that they sum to 1.

2.4.3 Particle Propagation - Dynamics Models

There are multiple approaches to modeling and predicting the state of the observed system

over time. We now list the different motion models used throughout the literature to de-

termine the most appropriate one for the task of pose tracking. Sadly, not all publications
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provide detailed descriptions of how particles are propagated over time [Agarwal and Triggs,

2006]. This is why we provide a quick survey of the most widely used propagation methods,

then we select methods to evaluate based on the goals and requirements of the current work.

Gaussian Diffusion

This simple motion model, based on the assumption that human motion is continuous over

a small interval of time, is widely used in the literature [Duff et al., 2011; Sedai et al., 2013;

Vondrak et al., 2013]. Equation 2.15, where Σ is a diagonal covariance matrix, shows how

states are assumed to evolve over time,

xt+∆t = xt +Nt(0,Σ) . (2.15)

One surprising point demonstrated by Yang et al. [2005] is that the choice of random

number generation algorithm can also influence the convergence speed and accuracy of the

particle filter, depending on the symmetry of the random samples drawn from the Gaussian

distribution.

First Order Motion

We work under the assumption that the pose evolves in a continuous manner, we do not

however know if the rate of change of the pose is also continuous or if the if the acceleration

is continuous. For this reason, we consider first and second order models, which allow us to

consider the rates at which the pose changes over time. This type of motion model considers

both the position and velocity of particles [Vondrak et al., 2013]. Given a state vector x and

a velocity ẋ, the basic form of this model is shown in Equation 2.16,

xt+∆t = xt + ẋt +
∆t2

2
· Nt(1,Σx) . (2.16)

The velocity of the particle can be computed in three ways. The first is to use the finite
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difference approximations of velocity by using the two previous states in the form shown in

Equation 2.17,

ẋt = xt−∆t − xt−2∆t +∆t · Nt(1,Σẋ) . (2.17)

The second way of obtaining ẋt is to again use a finite difference approximation, but

instead of using the state of each particle individually, we can use the output state of the

filter and assume that this approximated velocity should hold for all particles.

The third way is described by Hue et al. [2002] (see also Canals et al. [2009]), who propose

augmenting the state vector by the addition of velocity components to obtain x′
t = [xt, ẋt].

This provides the ability of directly tracking the velocity at the cost of a larger state space.

They also add a Gaussian component to the update equation, as shown in Equation 2.18,

where I is the identity matrix the same size as x and N is a vector of values drawn from a

zero-mean normal distribution,

x′
t+∆t =

I ∆t · I

0 I

x′
t +

∆t2

2
· I

∆t · I

Nt(1,Σ) . (2.18)

Second Order Motion

Taking this a step further, one can append an acceleration component to the pose and track

acceleration as well as velocity. Adding acceleration means that we can better approximate

the motion over time, at the cost of more parameters. The resulting pose vector becomes

x′′
t = [xt, ẋt, ẍt] with the time propagation Equation 2.19 where α, β, and γ are scaling

factors,

x′′
t+∆t =


I ∆t · I ∆t2

2
· I

0 I ∆t · I

0 0 I

x′′
t +


α · I

β · I

γ · I

Nt(0,Σ) . (2.19)
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Learned Motion Models

There are three main classes of approaches to this motion model. The first is to use a

database of recorded motion data to learn the probabilities of a state transition table [Klinger

and Arens, 2009]. These probabilities can be used to propagate states to their most likely

successors. The second approach is based on an understanding of human motion to improve

tracking performance for learned classes of motions [Wren and Pentland, 1999]. The use of

exemplar motion capture sequences as a prior to particle propagation is also presented as a

motion prior by Vondrak et al. [2013]. Particle states are propagated by finding the k nearest

neighbors (closest states) in the database and weighting their successors from the training

sequences. The third involves the use of convolutional neural networks (CNN), and will be

discussed in more detail in Chapter 5.

As all of these approaches are based on recorded data instead of first principle assump-

tions, they are only valid when the motion of the model somewhat matches the motion

present in the recorded database. For this reason, we use learned models both to detect

keyframes and generate pose hypotheses. The particle filter is still required to interpolate

between keyframes.

Rigid Body Physical Simulation

With the addition of contextual information such as the position of the ground plane [Duff

et al., 2011; Vondrak et al., 2013] and of other objects in the scene, as well as a few assump-

tions about properties of the object being tracked, we can use rigid body physical simulation

to propagate particles forward in time. Skeletal simulation is possible with an appropriate

kinematic model. Brubaker et al. [2010] propose a model for a simplified version of the lower

body and represent other kinematic joints as Markov models.

To obtain a more varied particle set as well as take into consideration external forces,

we need to add some perturbation to the particle states. These perturbations are analogous

to the addition of the Nt(0,Σ) term in Equations 2.15 and 2.18. Duff et al. [2011] have
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come up with three ways to add such perturbations in a meaningful way. The first is to

add a random variation, drawn from a Gaussian distribution, to the pose predicted by

the simulator. The second method is to apply a set of randomized external forces to the

simulator that will impact the predicted state. Lastly, both noise types can be combined to

obtain a more varied particle set.

If simulation is used to propagate states and no forces are applied to the model, we

obtain a passive motion [Vondrak et al., 2013, 2008] where only gravity pulls the skeleton

down. Active motion models require the addition of virtual forces to pull the model towards

a target state [Wang et al., 2013]. To determine which state the model should be drawn

towards, an understanding of the purpose of motion is necessary. This understanding comes

from a database of motions learned from motion capture sequences [Vondrak et al., 2013,

2008].

The main issue when looking at physics simulation is that in addition to the pose we

are interested in, we also need to keep track of the forces acting on each limb. These forces,

commonly encoded as screws, include both linear and rotational forces applied to each limb.

This greatly increases the pose space to around 100 DOF for the human model we are using.

Based on the results of the experiments presented in Section 4.2, we find that the tracker

becomes unstable when the number of DOF exceeds 50. The high number of DOF required

to keep track of forces acting upon the model thus constitutes too large of a pose space for

accurate tracking and would lead to instability. For this reason, we will need to restrict our

approach to using the motion models described previously that do not change the size of the

pose space as much.

2.4.4 Particle Resampling - Converging towards the solution

Particles need to be resampled either at each time step, or when the number of efficient

particles falls below a given threshold, depending on the strategy used. Particle resampling

is done in order to prevent either one, or a small subset of the particles, from overpowering
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the other particles and controlling the result. When this happens, the particles do not

represent the space around the correct solution well. To fix this, we can create a new set

of particles by moving the previous set of particles in the vicinity of the computed solution.

Multiple approaches to accomplish this are presented by Li et al. [2015].

As mentioned by Li et al. [2015], the selection of an appropriate strategy depends on

the application. For this reason, we explore this topic experimentally in Chapter 4 by

presenting experiments to explore the differences between the following resampling strategies:

multinomial, residual, systematic, stratified, and an hybrid residual systematic approach. We

also include the original uniform combing resampling method presented by Salmond and

Gordon [2005] and show experimentally that this classic approach outperforms the other

methods presented by Li et al. [2015] for the case we are interested in.

To somewhat combat particle impoverishment, we have added a slight modification to

the original combing method. The version we use is very similar except that the particles

are sorted in order of increasing weight and a configurable percentage of the lowest weighted

particles get regenerated randomly (Monte Carlo sampling) or through the use of a CNN.

The combing is done in the remaining particles. Figure 2.26 shows a graphical representation

of the particle selection process in a similar way as the original from [Salmond and Gordon,

2005]. This is an extreme case with 14 particles where half of the particles are randomly

reinitialized. The remaining 7 particles are selected with uniformly spaced combs. Sorting

the particles by weight makes it easier to prevent low weight particles from being selected

by the combing process. The downside to this modification is the added computational

complexity required to sort the particles in the first place.

2.4.5 Result Computation

While perhaps the most crucial part, it is also the simplest. The result is computed as

a weighted sum of the particles with their associated weights, as shown in Equation 2.20,
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Figure 2.26: Uniform comb particle selection scheme from Salmond and Gordon [2005] with
modification to allow random resampling of lowest weight particles.
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where wk
t is the same as in Equation 2.14,

rt =
N−1∑
k=0

wk
t x

k
t . (2.20)

This approach works well when the distribution of particles and their weights support

a single hypothesis. Figure 2.27 provides two possible particle density distributions for

a theoretical two dimensional particle filter that allows us to visually observe the effect

of ambiguity. An unambiguous case where the weighted average works well is shown in

Figure 2.27(a). In ambiguous cases like the one shown in Figure 2.27(b), the particle weight

density distribution supports multiple hypotheses and the weighted average would provide

an incorrect solution between the two hypotheses. Experiments in Chapter 4 show that

ambiguity isn’t as simple to detect as in Figure 2.27(b) in real world applications, but that

good priors can result in convergence in certain ambiguous cases. A specific ambiguous case

is presented in Figure 4.30, where we use a two degree of freedom model and plot the metric

value over the entire pose space. We see that the distribution is not as easily resolved as

that of Figure 2.27(b).

(a) Unambiguous Case (b) Ambiguous Case

Figure 2.27: Two dimensional example particle weight density distribution with and without
ambiguity
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Chapter 3

Experimental Setup

This chapter focuses on discussing the technical characteristics of the framework we imple-

mented to test our assumptions.

3.1 Implementation

The goal of this section is to describe the system used for the experiments presented. This is

both to make it possible to reproduce results as well as to provide context on the environment

used.

3.1.1 Software

Being a proponent of the open-source initiative, the initial goal was to only rely on open-

source software if possible. The tracking system runs on a Linux operating system and all

tools used were open-source. The only issue that was encountered is that the HumanEVA

dataset is distributed as a MATLAB program and matrices. Thankfully, the data could be

converted using GNU Octave [Eaton and al., 1988].

Most of the tracking program is written in C++ and uses different libraries for the

different tasks. Most notably, we rely on OpenGL [SiliconGraphics, 1992] to render images
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and OpenCL [KhronosGroup, 2009] for GPU computation. This choice was based on the

use of OpenCL and OpenGL interoperability to allow OpenCL to use the OpenGL pixel

buffers directly without the need to transfer the rendered images to the CPU memory and

back to GPU memory for OpenCL. If we had to rewrite the code base, we would upgrade

to Vulkan [KhronosGroup, 2016] to enable homogeneous render and compute buffers, which

would simplify the process.

The deep learning parts of the tracker depend on Keras [Chollet, 2015], relying on the Ten-

sorflow [GoogleBrainTeam, 2015] backend. Most of the deep learning is written in Python, as

the C API for Keras was found to be unreliable. We then embed the Python scripts in our

C++ program to facilitate the transfer of images and matrices between C++ and Python.

The small scale experiments presented in Chapter 4 do no rely on the CNN, as the particle

filter can track the model without it and the goal is to tune the various parameters of the

filter. When starting to experiment with human models in Chapter 5, we quickly realized

that the mapping between the silhouette and the pose is less linear than what we see with

the small scale model. We propose the use of a convolutional neural network as an addi-

tional estimator of the inverse mapping between silhouette and pose, with the particle filter

still being used to track the solution over time. Specifics about the architecture and training

of the network are thus presented in Chapter 5, where the filter needs the CNN to replace

particles the diverge from the solution.

3.1.2 Hardware

The tracking system runs on a single computer with an Intel Core i7 6850K CPU clocked at

around 4GHz and 128 gigabytes of system memory. The GPU is an NVidia GeForce GTX

TITAN Black with 6 gigabytes of memory, graciously provided by NVidia. System memory

can be used by SADB to store large amounts of data, without the need to read and write

to physical media. The only other hardware component worthy of note here is a Sony alpha

6000 that was used to record the sequences in front of the green screen.
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3.2 Companion Website

As a lot of the experiments required to test our hypotheses involve image sequences, the most

practical way to visualize the data is to render video clips. As videos cannot be included

in the paper thesis document, we provide summaries of the results here and opt to create

a web page to present the video results. This page is located at http://cim.mcgill.ca/

~olivier/thesis/. In the interest of keeping the thesis succint, the companion website also

presents additional experiments that are not thoroughly discussed in the thesis as they are

closely related, but somewhat outside the scope of the thesis.

The page is structured as a list of the experiments, separated into four main sections.

Clicking on the title of an experiment will open a section containing the data. In many cases,

drop-down input selections are available to see different results. The first video at the top

of the page is the result of the chroma-keyed sequence, which is a good representation of the

capabilities of the tracker. Figure 3.1 shows a screenshot of the top of the website.

The first section presents all the plots from the evaluation of the silhouette comparison

metrics. The results of all these plots are summarized in Table 2.2. Between the three

experiments, there are almost a 1000 plots that can be viewed in this section. The metric

behavior as a function of distance in pose space experiment contains plots from Figure 2.17,

as well as all of the other combination of parameters and cases evaluated. Similarly, the

generalized metric behavior as a function of distance in pose space plots show how the

metrics behave given randomized poses. Finally, the metric behavior when moving along

each DOF shows how each DOF affects the metric value.

The second section contains all the results related to the small scale experiments. Most

of these experiments follow the order in which they are described in Chapter 4. The only

experiment not described in this document is the root motion experiment. This experiment

tests the motion of the model itself, instead of changes to the pose of the model. It is thus

a bit outside of the focus of the thesis. The results are also unsurprising, as it works as

expected.
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Figure 3.1: Screenshot of the top of the companion website, showing the format of the page.
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The third section presents the results of the human experiments, starting with the syn-

thetic experiments, going over early experiments of the chroma-keyed sequence and ending

with the HumanEVA experiments. These experiments follow the flow of Chapter 5.

The final section contains experiments that do not fit into any of the other sections and

is called “Additional Content”. These are a lot of the experiments made to test different

components of the framework itself. The skeleton DOF test aims to test the deformable

human mesh model and visualize which DOF corresponds to which limb. The physics tests

show early experiments with the usage of physics engines by using a kinematic model with

capsules as limbs. The 2D particle filter test allowed us to see the particle distribution and

the particle weights. The camera calibration experiments were an interesting way to see if

we could align our virtual OpenGL world with the real world camera calibration by setting

up a simple augmented reality demonstration. The deformation and shader tests were used

to test shader programs to make sure we could render all of the required data properly.

We also made sure that we could read the HumanEVA dataset properly by rendering the

marker locations. This renderer demonstrated some issues with the HumanEVA dataset,

which motivated our decision to use the 2D reprojection error metric when we evaluate

the performance of our tracker with this dataset. The other video in this section is the

experiment we did with multiple cameras. We used this to prove that our approach can

scale to more complex capture systems by integrating multiple sources of information.

While the main goal of the webpage is to show results that could not be included in this

document, we hope it also demonstrates a level transparency to show what the conclusions

we make are based on.

3.3 Situational Awareness Database

Throughout the framework, we need to handle different subproblems that each require differ-

ent representations. By representations, we mean ways to encode information into a useful
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format so that it can be used by different components consistently. Some of the components

rely on time series data, while others rely on geometric information, and others on pixel in-

tensity images. In order to do any meaningful computation on this data, we need to address

the representation problem.

We briefly present in this section the Situational Awareness DataBase (SADB) as a novel

solution to represent arbitrary data in a consistent semantic manner. While there may have

been other, simpler, solutions to work around the representation problem for the pose tracker,

a solution like SADB is required for larger scale projects such as CHARM [Cormier et al.,

2015], where a large number of agents need to work in collaboration towards a common goal.

It also presents interesting oportunities to separate the computational load between multiple

compute nodes. Some work has been done to port SADB to a ROS [Quigley et al., 2009]

node as part of the CHARM project, but the current implementation remains a standalone

server. Although this is a significant implementation component of the overall pose tracking

solution we propose, we do not examine SADB here in detail as we aim to focus on the

tracking aspect itself.

The SADB system is designed as a blackboard system, where all clients can read or write.

The implementation loosely follows the guidelines presented by Corkill et al. [1987], but also

borrows from modern NoSQL database design [Foundation, 2005; Sanfilippo and Noordhuis,

2009; WEB, 2009].

Figure 3.2 provides a block diagram summary of the basic architecture of the SADB

system. To be consistent with the nomenclature used in most of the blackboard architecture

literature, the clients are called knowledge sources or sinks, and the general SADB Controller

is denoted as the control shell.

At its core, the SADB control shell is implemented such that information can be accessed

on a real-time basis by both programs and human operators. Two access interfaces are

presented, a native SADB interface, which implements all of the data access functions, and

a simplified HTTP interface which allows humans to more intuitively monitor the operation
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Figure 3.2: Block diagram of the Situational Awareness DataBase (SADB) framework

and state of the database.

As agents produce and consume information at different rates, synchronization between

these agents can quickly become an issue. To solve this problem, values stored on the black-

board are discretely time-coded, and agents may request information at arbitrary timestamps

through a variety of methods.

The simplest way is to return the value at the timestamp closest to the requested one.

This essentially creates a piece-wise constant function from the data points. The better,

albeit slightly more computationally expensive, way to answer those requests is by using

interpolation (or extrapolation) to generate intermediate values, based on recorded values.

A variety of interpolation algorithms are presented and can be selected by the clients, based

on the type of requested information. Other timestamp access approaches are also available

such as simply retrieving the latest value or the value either before or after a given target

timestamp. This handling of time-based information provides a variable granularity that

allows each client to receive information at their own required rates.

A key point of SADB is that it can be used with visualization tools to see the state of

the system at any timestamp and to play back events. Figure 3.3 shows how a laser scan

of an environment stored in SADB can be retrieved and rendered. Similarly, Figure 3.4

shows a skeleton rendered from pose data also stored in SADB. While these two pieces of

information are recorded by different algorithms, both can be stored and referenced in the
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same coordinate system and time code, which means that they could be rendered either

together or separately. This serves two purposes. First, it can be used to inspect events

after they have occurred by looking at all of the available information related to the event.

Second, it facilitates the analysis of the algorithms individually by enabling one to isolate

only the parts of information generated by the algorithm one is evaluating. Figures 3.3 and

3.4 are examples taken from the CHARM project.

Figure 3.3: Screenshot of rendered geometric data read from SADB.

Figure 3.4: Screenshot of rendered pose data read from SADB.

As we focus on the tracking problem itself, no further discussion of the technical details

of SADB are presented in this thesis. We invite the reader to consult an earlier publication
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in the conference on Computer and Robot Vision [Cormier et al., 2015] to learn more about

this system. The system in its entirety is publicly available at http://www.cim.mcgill.

ca/~apl/database/sadb/.
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Chapter 4

Small Scale Experiments

This chapter describes and reports the results of small scale experiments designed to validate

our main assumptions and determine if our framework can generalize to human models.

The results from this chapter are crucial for tuning the various parameters of our model and,

in turn, make it possible to do the experiment with a complete human model that will be

presented in the following chapter.

To begin experimenting with various combinations of propagation, resampling, and eval-

uation methods, we devise a set of fully controlled small scale experiments. These experi-

ments consist of tracking a virtual snake-like shape evolving over time. Figure 4.1 shows a

diagram of the model that will be used, with the mesh drawn in blue and the skeleton in

red. This configuration enables arbitrary variations in the number of DOF in the skeleton,

by adding or removing bones, without changes to the mesh model.

As shown in Figure 4.2, bones in our model are defined by 3 parameters: the index of the

parent joint p, the distance from the parent joint l, and the relative orientation with respect

to the orientation of the parent q. This simple bone model allows the representation of any

articulated structure, from the snake-like model we are using for our small-scale experiments,

to the complete human model that will be described in the next Chapter.

It must be noted that any rotation around the main axis is ambiguous if none of the other
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Figure 4.2: 2D graphical representation of three parameters of a bone.
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DOF are in a configuration that make it unambiguous. This makes this small scale problem

harder, but also makes it more similar to the kind of ambiguity that occurs naturally with

human silhouettes, where the distinction between front and back is ambiguous.

Del Rincón et al. [2011] propose the use of two distinct filters, one to track the root

position of the model and the second to track the pose. Our experimental configuration

assumes that this type of approach will be used, which allows us to simplify experimentation

by keeping the position of the root joint constant. This enables us to experiment on the pose

tracking particle filter exclusively.

Figure 4.3 provides diagrams of the cases that will be used in the small-scale experiments.

Each of these cases introduces specific issues that can arise in real sequences.

4.1 Stability Experimentation

This first experiment consists of using the basic configuration (Figure 4.3(a)) and executing

the tracking algorithm on a motionless sequence to measure the amount of drift and error that

accumulates over time. This allows us to experimentally determine approximate values for

the various parameters of the tracker and compare the stability of the different motion priors.

We arbitrarily choose to run the tracker for 100 frames before collecting measurements.

These collected measurements consist of the following:

• Image Data: Three images are recorded in order to visually assess the tracker’s per-

formance. Figure 4.9 shows what these images look like for the small-scale experiments.

– Input image: a copy of the rgb image that is fed to the tracker. In the small-

scale experiments, we directly render the segmented image, so only the segmented

image is recorded.

– Segmented image: the binary segmented image of the input, which allows us to

determine the cause of some problems such as mislabeling or occlusion.
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– Output Image: the output pose from the tracker is rendered to obtain a graphical

representation of the output pose.

• Pose Error: Measured in degrees as a 2-norm (Euclidean) distance in pose space

between the output from the tracker and the ground truth.

• Visual Accuracy: Value of the visual metric computed between the input image and

the rendered output from the tracker.

• End Effector Position: Tracked position of the model’s endpoint

• End Effector Error: Distance between the tracked end-effector position and the

ground truth.

• Particle Pose: The pose and value of the metric of each particle is recorded. This

information may be useful as we can look at histograms of the particle distribution to

determine the cause of certain issues such as ambiguity.

• Particle Statistics: Statistics such as particle dispersion and the number of efficient

particles provide some information about how far particles are distributed with respect

to the tracker’s output and how many particles contribute to the solution, based on

their weights.

The first trials consist of varying the amount of particles used for the particle filter and

recording the average visual accuracy (metric value of the tracker’s output) and pose error

over the tracking sequence. Figure 4.4 provides plots of these results for a Gaussian prior.

In these plots, the black dots represents the recorded points, and the red curve is a fit to

those points. The fitted curve is not accurate, but provides a general representation of the

behavior. As expected, there is an increase in the visual accuracy and decrease in the pose

error as more particles are considered. This is expected because a larger particle set provides

a better coverage of the metric hypersurface around the solution, which, in turn, leads to a

more accurate evaluation of the local maximum.

74



0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 10 100 1000 10000 100000

V
isu

al
A

cc
ur

ac
y

Particles

Visual Accuracy vs Particles

0
5

10
15
20
25
30
35
40
45

1 10 100 1000 10000 100000

Po
se

Er
ro

r
(d

eg
re

es
)

Particles

Pose Error vs Particles

Figure 4.4: Stability experiment results for the small scale experiments with a Gaussian prior.

Figure 4.5 shows the results for the same Gaussian prior, with the addition of a gradient

descent refining of the particle states. The results obtained with this approach are signif-

icantly worse than the results obtained from the Gaussian prior alone. This is due to the

gradient descent getting stuck in local maxima of the visual accuracy and not converging

toward the global maximum.
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Figure 4.5: Stability experiment results for the small scale experiments with a Gaussian prior
and gradient descent. Note here that the plot starts at 10, as the tracker fails to converge
for smaller numbers of particles.

The two next figures (Figures 4.6 and 4.7) provide results for first and second order
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motion models respectively. With a large number of particles, the results of both are similar

to those of the Gaussian prior, but the pose error is higher for smaller numbers of particles.
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Figure 4.6: Stability experiment results for the small scale experiments with a 1st order
motion model.
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Figure 4.7: Stability experiment results for the small scale experiments with a 2nd order
motion model.

The next parameter we can explore is the effect of is the standard deviation of the

Gaussian distribution. Figure 4.8 shows that the pose error grows linearly with the standard

deviation. This is expected as larger values means that the distance between particle states

will grow more rapidly, which in turn means that less particles will lie in the vicinity of
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the correct solution, thus resulting in a poorer approximation of the shape of the metric

hypersurface around the solution. While the results presented here are not quite exciting as

there is no motion, running this test for the next experiments should prove more insightful

as we expect motion speed to induce maxima and minima in the visual accuracy and pose

error plots respectively. This is because when the motion speed falls within the standard

deviation, the motion will be better captured as the particles will be propagated to the

correct position.
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Figure 4.8: Influence of the standard deviation on the stability experiment results for the
small scale experiments without motion.

The reason why the second order motion model starts out with lower accuracy, and

conversely higher pose error, is due to the fact that only the pose was initialized with

ground truth values. This was done so that all three motion models start with the same

information. We can, however, see that increasing the standard deviation allows the tracker

to explore enough candidates to find and lock onto the correct solution. This again shows

the importance of choosing appropriate parameters and the need for a good initialization.

The most important result of this first set of experiments is that the visual accuracy is

inversely proportional to the pose error. While this was predicted by our study of the metrics

in Section 2.3, it shows that the assumptions we made hold for models other than humans.
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4.2 Base Motion Experiment

Figure 4.3(b) shows a graphical representation of the configuration used for this experiment

and Figure 4.9 shows a selection of five frames representative of the sequence that will be

used for the current experiment. This experiment provides the best case scenario for testing

motion priors.

frame 1 frame 50 frame 62 frame 70 frame 100

Figure 4.9: Selected frames from the simple motion sequence.

One experiment we can conduct with the motion sequence is to vary the number of degrees

of freedom. We can do this by keeping the same mesh model, but adding more bones to

the model shown in Figure 4.1. This adds more degrees of freedom to the model and allows

more varied motion. Figure 4.10 shows the results of such an experiment. There are two

interesting things to note about this. First is the general tendency of the visual accuracy to

decrease as more DOF are present and inversely as the pose error increases. This effect is

not as pronounced as initially expected. This is likely due to the redundancy in DOF, where

an error at a given DOF can be compensated by the next DOF in the chain. The second is

the behavior with smaller numbers of DOF caused by improper choice of standard deviation,

where small changes in the pose vector of the snake with a low number of DOF causes larger

pixel changes. The other important note is that the second order prior completely fails when

the number of DOF is higher than fifty. It is currently not known why this occurs, but as

we are dealing with a 36 DOF model, this issue is of low priority and left for future work.

Looking at Figure 4.11, we see a clear demarkation in the visual accuracy between the

three priors, where the second order prior is approximately 10% better than the first order

prior, which is in turn approximately 10% better than the Gaussian prior. While this result
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Figure 4.10: Motion Experiment with different number of degrees of freedom.

carries onto the pose error, the difference between the Gaussian and second order priors is

only around 0.5 degrees, or a difference of around 3%.
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Figure 4.11: Stability experiment results for the small scale experiments with a Gaussian
prior and Gradient descent

As discussed earlier, the standard deviation sweep provided in Figure 4.12 shows a peak

where the standard deviation is large enough to allow the particles to properly cover an area

large enough that it includes the solution, but not so large that the particle density becomes

too low.
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Figure 4.12: Influence of the standard deviation on the stability experiment results for the
small scale experiments with simple motion

4.3 Occlusion Experiment

For this experiment we can look at two distinct cases. First is positive occlusion, where

the target is occluded by an object that is detected as foreground. This would mostly

happen with occluding objects that move during the sequence and cannot be included in the

background model fast enough. The second type is negative occlusion, where the target is

occluded by an object detected as background. This would happen when the background

model contains objects that lie between the camera and the tracked object. The sequences

are generated in the same way as the motion sequences, with the addition or removal of a

rectangle, as seen in Figure 4.13. We use the values for the standard deviation that were

found to provide the best results in the motion experiments.

In both cases, the occlusion has an impact on the silhouette similarity metric proportional

to the area covered. While we explore the issue of occlusion here, the sequences we will

use for human testing should contain little to no occlusion. Figures 4.14 and 4.15 show the

results of these experiments. It is interesting to see that in this case, as expected, higher

order models provide more accurate results by assuming that the rate of change of the pose

is continuous, so that the pose will continue its trajectory rather than moving randomly.
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Positive Occlusion Negative Occlusion

Figure 4.13: Selected frames from sequences with occlusion
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Figure 4.14: Influence of the number of particles on the small scale experiments with simple
motion and positive occlusion
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Figure 4.15: Influence of the number of particles on the small scale experiments with simple
motion and negative occlusion

4.4 Ambiguity Experiment

As shown in Figure 4.3(d), if the motion of the snake is along the main axis of the camera,

there is a lot of ambiguity as very few pixels change. Figure 4.16 show two frames from

the ambiguous sequence. Those two frames are equivalent to Frame 1 and Frame 100 from

Figure 4.9, with the camera rotated 90 degrees around the z axis. There is a notable scale

difference between the two images, but those correspond to the two extrema of the motion.

The scale change between consecutive frames is minimal when the snake is upright and

gradually increases as it bends either way.

We can start by looking at the particle sweep plots in Figure 4.17 to see that all three

motion priors struggle with this experiment. However, the second order motion is better at

finding solution that are visually close to the correct solution.

To better understand ambiguity, we can look at the particle distribution in the form of

what we will call temporal histograms. These plots, such as those in Figure 4.18, present how

particles are distributed over time. As we are looking at a model with 36 DOF, tracked by a

particle filter that considers a large number of particles, the amount of data to visualize has a

very high dimensionality and is thus hard to present. We look to reduce the dimensionality by
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(a) Snake bent toward the back (b) Snake bent toward the front

Figure 4.16: Selected frames from the ambiguous motion sequence
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Figure 4.17: Influence of the number of particles on the small scale experiments with am-
biguous motion
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choosing a different representation. We reduce the 36 DOF to a three dimensional vector by

computing the position of the end effector from the pose vector. To present the position of all

the particles, we opt to use a histogram representation. We get one histogram for the position

of the end effector along each axis. Only the histograms for the X and Y axis will be presented

because of space constraints, but all three are available on the companion website. To show

how the distributions evolve over time, we stack the histograms horizontally. Because we

are stacking them, we cannot draw the histograms with bars, we instead use colors to show

the number of particles in each bin. Looking at the plots in Figure 4.18, the horizontal axis

is time, measured in frames. The vertical axis is the position of particles in a normalized

coordinate system to restrict the range to [0, 1]. This is why the position axis has no unit.

Each column of the plot is the histogram of the particle positions at the frame number

corresponding to the column. The scale on the right of the plots shows how the colors relate

to the number of particles in each of the histogram bins. The histograms were normalized

so that the bin with the largest number of particles is one.

Before looking at the results for the ambiguous motion sequence described above, we can

go back to the sequence without motion to generate Figure 4.18 by plotting the temporal

histograms of the particle distributions. In Figure 4.18, the snake does not move and the

camera is placed on the Y axis looking straight at the model, so ambiguity is mostly along

the Y axis as motion along this axis would be hard to detect. This is seen in the plot for

the Y axis as the histograms show that the particles are more spread out. An example with

a lot of ambiguity can be seen in Figure 4.24, where ambiguity causes the filter particles to

scatter.

While we can visually inspect the histograms and determine along which dimension am-

biguity is more pronounced, we can also compute the entropy of the histograms to get a

measure of the amount of uncertainty. Figure 4.19 shows the entropy associated with the

histograms of Figure 4.18. As discussed earlier, the entropy along the X axis is much lower

than that along the Y axis. The entropy spikes after initialization and then decreases as
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resampling and propagation help to stabilize and converge toward the solution.
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Figure 4.18: Histogram of end effector position of particles for a sequence without motion
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Figure 4.19: Entropy associated with the histograms of Figure 4.18

Looking at a sequence with motion, we see that there is more ambiguity along all axes,

but that there is still more ambiguity along the camera’s main axis (Y in this case) as

evident from the entropy plot in Figure 4.21. Figures 4.20 and 4.21 show the histograms and

associated entropies, respectively. These plots stem from using a Gaussian diffusion motion

model.
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Figure 4.20: Histogram of end effector position of particles for a sequence with simple motion

400
450
500
550
600
650
700
750
800
850
900

0 10 20 30 40 50 60 70 80 90 100

En
tr

op
y

(b
its

)

Frame

X Entropy

500

600

700

800

900

1000

1100

1200

0 10 20 30 40 50 60 70 80 90 100

En
tr

op
y

(b
its

)

Frame

Y Entropy

Figure 4.21: Entropy associated with the histograms of Figure 4.20
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It is interesting to note that the entropy increases when the direction of motion changes

as it takes a few frames for the tracker to move particles along the right path and stabilize.

If we now add the ambiguous motion by moving the end effector back and forth along the

Y axis, we expect to see a sinusoidal shape in the plot of the Y position, and a straight line

for the X position.

Figures 4.22 and 4.23 show the histograms and associated entropy plots when using a

Gaussian prior. It can clearly be seen that the tracker fails to estimate the position along

the Y axis in this case. If it worked properly, we would expect to see something that looks

sinusoidal. An interesting thing to note is that due to the nature of the particle filter, we

do not see more than one peak in the histogram, as particles only cover the area around

where the tracker thinks the solution should be. This shows that detecting ambiguity is not

as simple as in the hypothetical case shown in Figure 2.27. Looking at the entropy of the

histogram does not further indicate the presence of ambiguity as the entropy for both axis

are in the same range as those in Figures 4.19 and 4.21.
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Figure 4.22: Histogram of end effector position of particles for a sequence with ambiguous
motion, using a Gaussian motion prior.

When switching to a first order motion model, we get significantly better results. Figures

4.24 and 4.25 show that the particle set is better at approximating the motion, where we

see a more sinusoidal shape to the motion along the Y axis. The particles are however more
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Figure 4.23: Entropy associated with the histograms of Figure 4.22

spread out. This gives a better coverage of the metric manifold, but also results in more

ambiguity, which results in a higher entropy, as seen in Figure 4.25.
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Figure 4.24: Histogram of end effector position of particles for a sequence with ambiguous
motion, using a first order motion prior.

Finally, when using a 2nd order motion model, we get improved results over the Gaussian

prior, but the tracker still struggles. This can be seen in Figures 4.26 and 4.27. After a

few iterations of resampling, the tracker seems to stabilize after approximately 65 frames,

where the particles become less spread out and more concentrated around possible solutions.

Ambiguity is still present and the resulting pose from the tracker is still incorrect.
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Figure 4.25: Entropy associated with the histograms of Figure 4.24
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Figure 4.26: Histogram of end effector position of particles for a sequence with ambiguous
motion, using a second order motion prior.
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Figure 4.27: Entropy associated with the histograms of Figure 4.26

The goal of these experiments was to determine if it was possible to determine when

ambiguity is present by looking at the distribution of the particles and the entropy of the

histograms. We see that this is possible, more ambiguity does result in a higher entropy,

but the way particles are distributed does not provide a clear solution on how to mitigate

the effects of ambiguity. We were hoping for the histogram to show a distribution similar to

that of Figure 2.27, but that is not the case. This demonstrates that ambiguity is a limiting

factor of our proposed system.

4.5 Initialization Error Experiment

The previous experiments relied on all particles being initialized to the correct pose. While a

useful approach for experimenting with other parameters, we do not expect to find an exact

initial pose for real-world human motion sequences.

To experiment, we started a series of tracker sequences where the particles were initialized

with an increasing distance from the correct solution. As with previous experiments, we ran

the tracker for 100 frames and recorded the usual measurements.

Figure 4.28 demonstrates that as the distance between the real pose and the initial pose
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of the tracker increases, the average pose error increases. The visual accuracy plot shows

that for any possibility of tracking, the initial pose should be within fifty degrees of the

correct pose, but closer is better.
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Figure 4.28: Stability experiment results for the small scale experiments with a Gaussian
prior and Gradient descent

4.6 Resampling Methods

To compare resampling methods, we used the stationary sequence of Figure 4.3(a) and

applied the different algorithms. We chose this sequence as particle drift would have a

greater effect on the results, thus providing a better test case for the resampling. To better

characterize the behavior over time of the particles, we varied the resampling percentages

and also tried using a percentage based on how many particles have a major contribution to

the solution. This measure is known as the number of efficient particles [Canals et al., 2009]

neff , as shown in Equation 4.1, where n is the number of particles and wk is the weight of

the kth particle.

neff =

(
n∑

k=1

w2
k

)−1

(4.1)
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For each resampling algorithm, we get a set of measurements that can be plotted as in

Figure 4.29, where the black points are the actual measurements, the red lines are a spline

fit to the measurements and the blue line represents the value obtained with the use of

the number of efficient particles. The blue line was plotted this way as the percentage

of resampled particles varies throughout the sequence and thus the measurement cannot

be plotted to a single point on the graph. To save space and make the data easier to

understand, Table 4.1 provides a summary of the results. As with other results omitted

from this document, the complete set of graphs is available on the companion website.

It is clear from these results that the uniform comb filter greatly outperforms the other

algorithms for this tracking task.
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Figure 4.29: Results for the stratified resampling algorithm

4.7 Metric Surface Experiment

First, before going into the description of this experiment, please excuse the graphics pre-

sented in Figure 4.30 as they were taken from video files. These were not initially meant to

be included in thesis as they stem from an early experiment, but the results proved to be

more informative than initially expected. While the following plots may be hard to see in
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Pose Error (degrees) Visual accuracy
Algorithm Min. Max. Avg. Std Dev neff Min. Max. Avg. Std Dev neff

Comb 5.64 6.61 6.14 0.27 6.23 0.90 0.92 0.91 0.01 0.90
Multinomial 31.61 67.69 44.90 9.60 37.05 0.47 0.78 0.59 0.08 0.60
Residual 38.69 82.90 57.38 11.45 41.01 0.45 0.72 0.54 0.07 0.63
Systematic 0.00 62.59 41.66 16.18 48.98 0.00 0.72 0.53 0.19 0.57
ResidualSystematic 29.31 70.16 45.36 11.30 39.68 0.47 0.73 0.57 0.07 0.64
Stratified 29.08 62.71 44.23 8.74 35.49 0.46 0.69 0.58 0.06 0.71

Table 4.1: Summarized results of the resampling experiments results

print, the videos on the companion website should prove to be easier to inspect.

Whereas the results in Section 2.3 focused on the local behavior of the metric value, the

current experiment looks at the global behavior of the metric value. The use of a 2 degree

of freedom model allows us to visually inspect the entire metric surface by computing the

value of the metric for all combinations of [integer] pose angles (-180o to 180o) and plotting

the resulting surface as a heatmap. The green circle overlayed on top represents the real

pose of the model.

The goal here was to determine how much ambiguity is present during the tracking

sequence and how well the metric is able to capture the information we require. For tracking

purposes, the tracker is trying to find the minimum of the metric surface, represented by

darker regions. In the ideal case, there should be a single global minimum on the metric

surface and the green circle should lie exactly at the center.

As any rotation around the Z axis cannot be resolved when the snake is pointing straight

up, we are obviously not looking at such an ideal case, and we can assume that tracking

a human will also present such ambiguity issues. As we can see in the frames reported in

Figure 4.30, ambiguity is almost always present as there are often multiple regions where

the metric value dips to low values.

Figure 4.30 shows three interesting cases. Column (a) shows a case where the metric

captures the situation well. The solution resides in a clearly defined local minimum. There

is some visible ambiguity, but as long as the initial estimate is in the vicinity of the solution,
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(a) Frame 9 (b) Frame 30 (c) Frame 117

Figure 4.30: Metric Surface Experiment Results.

even a simple gradient descent can find the correct solution. The second column displays

a case where the metric does not correctly represent the situation, as the solution (green

circle) does not lie within one of the minima. This is an issue as in this case, the metric is

not valid. Luckily, when looking at the entire video, we see that this occurs only for a few

frames and that the tracker should be able to recover. The last column shows a case where

ambiguity is extremely high. The metric value correctly encodes the situation as the value

is small over a wide range of poses. As this only occurs at specific frames, the particle filter

should be able to either maintain a proper solution, or be able to recover easily once the

ambiguity is resolved.

This can be seen at Frame 117, where almost any values along the center horizontal line

could be a solution. We can see in some short instances such as at Frame 30, that the minima

of the metric do not capture the correct solution represented by a green circle. The motion

model of the particle filter is what enables it to continue tracking it’s current solution and

move over the ambiguous “zones”. This short video took over a day to generate.

This experiment also confirms the need for the particle filter as the solution cannot be

found from a single frame in all cases. The temporal smoothing provided by the motion model
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should allow the tracker to maintain a consistent solution even in the case of ambiguity.
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Chapter 5

Human Experiments

This chapter presents experiments with a complete human model. The previous chapter has

shown that our tracker works with the number of DOF required to track a human pose, and

that it can even provide good approximations in the presence of occlusion and ambiguity. We

thus start with the same tracking framework, but quickly find that some of the assumptions

break under the higher complexity of the human model. We thus introduce a deep-learning

based method of generating candidate particles for the particle filter which greatly improves

the performance.

5.1 Initialization

When tracking on non-simulated monocular videos of humans, ground truth is not available

to initialize the tracker. For this task, we opted to turn toward deep learning and convolu-

tional neural networks (CNN). As seen earlier, the initialization does not need to be perfect,

but should be as close as possible. In fact, as long as the the Gaussian component of our

tracker covers the area of the solution within a few frames after initialization, our tracker

should converge.

Our aim here is to train a network to learn the mapping between silhouette and pose. To

this end, we propose a convolutional neural network similar in structure to that presented
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Figure 5.1: Convolutional Neural Network (CNN) architecture, all activation functions are
rectified linear units (ReLU).

by Toshev and Szegedy [2014], with the major distinction of using a silhouette as the input

instead of the full color image from the camera. Having shown that silhouettes have a strong

correlation with the pose, using binary images as the input reduces the dimensionality of

the data at the first layer, which simplifies the complexity of the network as a whole. This

also provides a texture-invarient network, which greatly reduces the amount of training data

required to learn the mapping. Another aspect of our approach, which enables more efficient

training, is the use of synthetic training data. As we have a generative model which can

generate a silhouette from a pose vector, we can directly use that data to learn the mapping

between the two. Figure 5.1 provides a high level overview of the network architecture.

Machine learning can also be integrated directly as part of the particle filtering framework

by either replacing the randomly resampled particles from Figure 2.26 with candidate poses

obtained from a pre-trained deep-learning network, or by replacing low weight particles

during the propagation stage.

In order to obtain different candidates from the network and allow our tracker to evalu-

ate a wider range of candidates, we can use one of three approaches. The first, and simplest

way to add variation to the candidates is to add a Gaussian component to the output of
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the CNN. This is similar to what the particle filter does to increase coverage internally. The

second technique is to distort the input silhouette before sending it through the network,

which would result in different outputs. The last approach is to use “dropout as a Bayesian

approximation” [Gal and Ghahramani, 2016] by retaining dropout on the output fully con-

nected layers when predicting results. This means that every time a silhouette goes through

the CNN, a different output pose candidate is obtained. While all three approaches provide

more variety in the resulting candidate poses, the last two methods are more interesting as

they may provide candidates that are not necessarily all close to one another. This means

that the network may be able to provide a solution to ambiguity by exploring more likely

candidates even if they are not in the same vicinity. We opt to use the third method as the

choice of algorithm used for distorting the silhouette may introduce a bias.

Training

Remembering the results of Section 2.3, we know that the metric error and the pose distance

are closely correlated. This allows us to train the network using the mean square error (MSE)

in pose space as the training loss function. This prevents us from having to render the

pose output from the network in order to compute the loss function, thus greatly reducing

training time.

Initial experimentation with a synthetic mesh model provided encouraging results when

executed with synthetic data, but proved inadequate with real data. In order for the model

to generalize as well as possible, we use multiple 3D human models to generate more varied

silhouettes. To this end, one hundred randomized human models were generated by altering

key parameters such as height, weight, muscle mass, sex, and age within MakeHuman [Team,

2001]. Figure 5.2 provides a selection of a few such models to show the type of resulting

variety.

Due to ambiguity and self occlusion in the training data, we do not expect the network

to reach a zero error with any amount of training. Before deciding on the network shown in
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Figure 5.2: Sample models used for training

Figure 5.1, we tried to use transfer learning by using well-known pre-trained networks such

as VGG16 [Simonyan and Zisserman, 2014] with the output softmax layer replaced with a

sigmoid layer of the size of our pose vector.
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(a) Our Network (b) VGG16 [Simonyan and Zisserman, 2014]

Figure 5.3: Means squared error vs epoch. NPSU2 stands for normalized pose space unit
squared.

Figure 5.3(a) shows the loss function of our network and Figure 5.3(b) shows the loss

function when training vgg16 for the same type and amount of training data. The error is

measured in normalized pose space unit squared (NPSU2). This is a measure of Euclidean

distance (2-norm) in a normalized pose space where each component lies within the range

0 and 1. We have normalized our pose space by setting a minimum and maximum degree

value for each DOF based on bio-mechanical data. When training the network we use a

36 degree of freedom pose vector. We have also experimented with a 25 DOFs network,
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by locking the rotation of the hands and feet to the central position, to speed up training

when experimenting. This alternate network was use solely for certain experiments with the

chroma-keyed sequences, not for the experiments on the HumanEVA dataset.

To match the expected dimensions, the data when training vgg16 was resized to 224x224

and the silhouette was converted to 3 channels instead of our 256x256 single channel images.

During training of vgg16, the convolutional layers were locked and only the top three fully

connected layers were trained. We found that, when using transfer learning, the final mean

squared error is similar to that of our proposed network, but that a larger number of epoch

is required for the loss function to “bottom out” due to computational complexity. For the

same reason, our network requires less memory as it contains less parameters and works on

single channel binary input data.

5.2 Evaluation

We evaluated our method on four datasets, first is a computer generated synthetic dataset

that provides ideal testing conditions as well as ground truth. The second test involves

a chroma keyed data set created for the purpose of testing our approach on real data,

while eliminating issues related to the silhouette extraction. Sadly, this second dataset

does not include ground truth and will be use as a qualitative evaluation only. The final two

datasets are publicly available sets used in the literature to compare with other approaches.

The selected datasets are HumanEVA [Sigal and Black, 2006] and Human3.6M [Ionescu

et al., 2014]. Comparison with other methods is made difficult as the skeletal structure

differs between authors, as different authors focus on different aspects. Furthermore, most

published results with the HumanEVA dataset stem from methods trained directly on the

dataset [Moreno-Noguer, 2017]. We aim to develop a tracker which can generalize to any

human silhouette. We hope for better results with the Human3.6M dataset as it includes

precomputed background-foreground segmentation.
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5.2.1 Synthetic Data

Similarly to the metric selection experiments of Section 2.3, using synthetic data allows us

to experiment in ideal conditions to test the base performance of the tracker.

The first experiment consists of running the tracker on a static sequence of images and

looking at the output of the tracker. This allows us to characterize the stability of the

tracker. Figure 5.4 shows that the pose error starts at a higher value then stabilizes after

approximately 20 frames. This behavior is mostly caused by the temporal smoothing aspect

of the filter, which requires a few frames before converging and stabilizing close to the

solution. The error is once again measured in normalized pose space units (NPSU2).
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Figure 5.4: Pose error over a sequence containing no motion

In addition to the 3D pose error, we also measure the 2D pose reprojection error. This

error is computed as the average distance between the position of certain joint locations of

the tracked pose and the positions from the ground truth. We add this error metric as it

will be used when evaluating our tracker on the public datasets, as the ground truth of those

datasets do not use the same pose vectors, and thus comparing joint locations requires less

conversions, which may introduce new sources of error. The joints used to compute this error

are the top of the head, the shoulders, elbows, wrists, knees, and ankles. Figure 5.5 provides

the plot of the 2D pose error. It is important to note that the 2D results were computed

separately. Due to the randomess aspect of our particle filters, the results will not exactly
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match. We can however see the same global behavior of a high initial error which quickly

stabilizes to a small value.
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Figure 5.5: 2D Pose error over a sequence containing no motion

Similar to what was done for the metric selection, we tried the tracker for sequences

containing motion on each degree of freedom individually and ran sequences twice, once from

the front, once from the side. Again, the complete results are available on the companion

website. A summary of the average pose errors of each sequence is reported in Table 5.1. The

pose errors are measured as the L2 norm between the known pose that was used to generate

the data and the output pose from the tracker. These pose errors are thus measured in a

normalized space and in the range [0,6] as we are looking at a 36 DOF model. The 2D pose

error are reprojection errors, measured in pixels. To compute these values, we project the

3D joint positions of the model to a 2D image space and compare the resulting positions

with those of the ground truth data. The numbers reported are the average error over all

joints, over all frames of the sequence. From these results we determine that our approach

works for human models. Looking at the videos shows that there is a noticeable amount of

oscillation around the solution. This might be resolved by increasing the temporal smoothing

at the cost of a lag when tracking motion.

The surprising result is that the 3D pose error is significantly lower when the model is

viewed from the side, while the 2D pose error is higher than when the model is viewed from
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Frontal View Side View
3D Pose 2D Pose 3D Pose 2D Pose

DOF Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

00 0.76 0.10 53.86 30.55 0.38 0.15 31.93 8.37
01 0.70 0.09 19.51 10.09 0.40 0.14 63.41 27.09
02 0.70 0.17 47.04 24.32 0.44 0.27 30.37 9.37
03 0.68 0.07 32.51 12.31 0.38 0.15 19.90 6.59
04 0.72 0.08 14.24 5.90 0.39 0.14 34.15 10.26
05 0.67 0.08 19.54 4.34 0.36 0.14 27.81 5.28
06 0.87 0.21 26.75 8.57 0.39 0.19 35.13 15.61
07 0.80 0.20 24.24 10.79 0.43 0.25 49.56 14.41
08 0.77 0.14 22.26 7.16 0.35 0.15 25.20 3.84
09 0.76 0.14 12.63 7.63 0.34 0.14 29.53 2.87
10 0.71 0.07 13.09 4.16 0.34 0.14 15.33 3.91
11 0.53 0.09 15.66 4.18 0.34 0.14 18.77 5.00
12 0.73 0.11 16.53 4.55 0.38 0.18 14.83 4.42
13 0.73 0.08 19.93 4.81 0.44 0.19 34.13 6.68
14 0.72 0.07 16.97 5.37 0.34 0.14 31.19 3.79
15 0.74 0.12 17.31 5.62 0.39 0.16 28.34 3.50
16 0.72 0.09 18.64 4.65 0.41 0.20 27.58 7.48
17 0.70 0.07 14.31 4.52 0.33 0.14 28.76 3.17
18 0.74 0.17 17.25 5.13 0.47 0.21 23.26 4.76
19 0.74 0.16 19.72 4.15 0.47 0.26 30.00 4.35
20 0.76 0.16 19.43 5.61 0.36 0.16 17.36 4.71
21 0.88 0.17 25.26 7.25 0.40 0.22 28.62 6.67
22 0.76 0.13 16.47 4.50 0.34 0.15 28.20 3.04
23 0.73 0.15 20.55 5.41 0.34 0.14 22.95 3.69
24 0.85 0.16 19.82 5.33 0.39 0.21 35.94 6.57
25 0.75 0.12 14.97 4.93 0.34 0.14 27.97 3.34
26 0.82 0.15 20.40 4.96 0.39 0.21 25.51 3.42
27 0.71 0.09 15.59 4.74 0.37 0.19 23.06 3.76
28 0.85 0.15 18.43 5.46 0.43 0.21 19.90 5.72
29 0.71 0.12 16.22 4.36 0.36 0.20 26.53 3.31
30 0.65 0.10 11.36 4.99 0.38 0.18 21.40 3.44
31 0.73 0.12 12.33 5.08 0.37 0.21 23.83 3.56
32 0.81 0.17 15.24 5.07 0.34 0.14 10.45 5.69
33 0.70 0.09 15.02 4.59 0.36 0.19 24.00 5.56
34 0.80 0.17 13.46 5.25 0.34 0.15 9.95 4.83
35 0.78 0.11 14.53 4.59 0.37 0.17 20.87 3.77

Table 5.1: Recorded 2D and 3D pose errors from synthetic data sequences with a single
moving joint
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the front. We confirm this finding with the HumanEVA dataset as it presents 3 different

views and the same behavior is observed. The other interesting result in this table is the

higher than expected 2D pose errors. The average 2D pose errors are between 15 and 20

pixels. Figure 5.6 shows a graphical representation of the 2D pose for a frame from the

ground truth and from the tracker output. We can notice a significant vertical axis offset

simply by looking at the joint positions related to the grid. This offset alone accounts for

approximately a 12 pixel error along the vertical axis for most joints. This offset is caused by

the particle filter responsible for tracking the root position. More investigation is required

to find out why.

Ground Truth Tracker Output

Figure 5.6: Example result from the tracker showing a noticeable offset along the vertical
axis.
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5.2.2 Chroma-keyed Experiment

We have so far demonstrated that our approach can work on synthetic data. We will now turn

our attention to real data and try to determine if our tracker can generalize and cope with the

imperfections associated with real data such as noise, inaccurate segmentation, and model

mismatch. We begin with a homemade dataset with sequences recorded in front of a green

screen to help with segmentation. As this dataset does not include ground truth, we will

only use it for qualitative purposes. The goal here is to determine general characteristics of

the tracker and determine if it can generalize enough to be functional on real-world data. To

save on computation time, we only run the pose tracker and assume that the root position

is fixed.

Figures 5.7, 5.8, and 5.9 provide example cropped silhouettes from a chroma keyed se-

quence. The left columns show the input silhouette, while the right columns show a silhouette

rendered from the output of the tracker, for comparison purposes.

The first thing we notice is that the silhouette of the virtual model does not exactly match

the silhouette of the subject in the sequence. Using a 3D scan of the model might help in

this case, but would not help in making the system more generalizable. While introducing

error, this mismatch does not prevent the tracker from capturing a good representation of

the pose. By looking at the entire video1 we notice that the tracker is not exactly stable

due to the shape mismatch and that it has more difficulty tracking the lower body, but that

overall it can keep track of the general pose and can recover from errors when it fails. We

now know that with good segmentation, our model generalizes well enough to provide useful

tracking from real-world image sequences.

5.2.3 HumanEVA Dataset [Sigal and Black, 2006]

The humanEVA dataset consists of a variety of sequences containing different activities,

performed by 4 different subjects (actors). The data itself is composed of a collection of 4
1The first video on the companion website, labeled “Final Experiment”
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Real Silhouette Tracker Output Real Silhouette Tracker Output

Figure 5.7: Example result from the chroma-keyed sequence (part 1)

106



Real Silhouette Tracker Output Real Silhouette Tracker Output

Figure 5.8: Example result from the chroma-keyed sequence (part 2)
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Real Silhouette Tracker Output Real Silhouette Tracker Output

Figure 5.9: Example result from the chroma-keyed sequence (part 3)
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grayscale cameras, 3 color cameras, and ground truth pose recorded with a Vicon motion

capture system. Figure 5.10 provides sample frames to show how the cameras are located

with respect to the subject. While the grayscale images are shown, we will only apply our

tracker to the color images as the segmentation algorithm we are using relies on color to

determine which pixels compose the silhouette of the subject.

(a) (b) (c) (d)

(e) (f) (g)

Figure 5.10: Example images from the HumanEVA dataset showing the four grayscale (a-d)
and three color cameras (e-g).

Applying our tracker to the various sequences and looking at the output of the tracker,

we quickly notice that it fails to properly track the subject’s pose. As with most other

experiments, only some of the results are reported here, but the full set of videos and graphics

is available on the companion website for convenient access. After executing our tracker on

the sequences, we compare our results to the ground truth provided in the dataset to obtain

a quantitative measure of our tracker’s performance. Figures 5.11 through 5.13 provide the

error plots for the three cameras of the Gesture-1 sequence with subject 1. The recorded

errors are 2D reprojection errors, measured in the same way as the results in Table 5.1,

but presented as plots of the error values over time instead of a single average for the entire

sequence. The plots also report the standard deviation as well as the minimum and maximum

joint reprojection errors. The first thing to notice is that the errors are considerably higher
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than what was seen with synthetic data. This is supported by our visual inspection of the

output videos, shown on the companion website.
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Figure 5.11: 2D reprojection error for sequence Gesture-1 of HumanEVA, with subject
1,viewed from camera 1.

These figures show that the lowest average error is obtained with the second camera,

while camera 1 provides the worse results. Looking at the segmentation images, we see

clearly that the segmentation is noticeably better with the second camera as there is less

background clutter that can be mistaken as part of the silhouette, and vice versa. The third

camera, with an error somewhere in the middle shows a worse segmentation than Camera

2, mainly where the feet and the floors shadows are mislabeled, but a much better overall

segmentation than Camera 1. Figure 5.14 shows the same segmented frame from the three

cameras. In this particular frame, the first camera fails to detect the right arm of the subject.

This seems to suggest that errors in segmentation lead to much lower tracking performance.

Table 5.2 provides a summary of the errors obtained in the sequences where ground truth

is available. We see the same pattern of Camera 2 providing better results for most sequences

other than those with Subject 2. Inspecting the videos with the second subject reveals that

the shadows are more important with Subject 2 than with the other subjects and that this

causes overall larger errors. All of this seems to support our hypothesis that the silhouette
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Figure 5.12: 2D reprojection error for sequence Gesture-1 of HumanEVA, with subject
1,viewed from camera 2.
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Figure 5.13: 2D reprojection error for sequence Gesture-1 of HumanEVA, with subject
1,viewed from camera 3.
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Camera 1 Camera 2 Camera 3

Figure 5.14: Example images from the HumanEVA dataset showing the segmentation from
the three cameras color cameras.

segmentation is the limiting factor for our tracker.

Camera 1 Camera 2 Camera 3
Sequence Subject Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

Box-1 1 70.43 7.36 48.19 12.45 40.74 10.02
Gestures-1 1 75.41 21.52 45.33 24.39 51.45 23.68
Jog-1 1 81.63 27.01 66.86 24.03 79.32 30.97
Walking-1 1 89.45 30.68 98.96 30.09 89.24 27.37

Jog-1 2 128.18 40.08 133.91 52.16 136.40 51.38
ThrowCatch-1 2 84.58 11.47 81.82 32.10 83.93 43.04
Walking-1 2 109.20 37.02 112.34 37.24 118.57 38.29

Jog-1 3 101.93 32.30 91.15 28.36 86.35 30.55
Walking-1 3 126.42 43.51 121.95 52.83 150.57 83.42

Table 5.2: Recorded 2D pose errors (pixels) from HumanEVA [Sigal and Black, 2006] se-
quences

5.2.4 Human3.6M Dataset [Ionescu et al., 2014]

While we initially had high hopes for this dataset as it includes segmentation data, inspecting

the data itself revealed the same segmentation issues we encountered when segmenting the

data from the HumanEVA dataset. Figure 5.15 shows a couple frames where segmentation

issues were important and perhaps worse than our Gaussian mixture model applied to some

of the HumanEVA sequences. Sadly, Human3.6m does not provide the empty sequences

required to train the background models needed to re-segment the data.
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Figure 5.15: Sample Human3.6M [Ionescu et al., 2014] segmentation showing errors.

As the segmentation is no better than that of the HumanEVA dataset, we do not expect

functional results and have thus opted not to use this dataset at this point in time.

In conclusion, it is clear that our implementation is limited by the quality of the silhouette

segmentation, which is problematic with the sequences in both HumanEva and Human3.6M

datasets. The experiments with chroma keyed sequences indicate that with appropriate

segmentation, our approach provides good results. It is, however, important to look at the

results in the context of the initial goal of this thesis. Our approach, tracking 36 DOFs,

generalizes well and works well even on sequences where the human doesn’t match the

virtual model. To put this in perspective, most deep learning approaches, for example the

network presented by Moreno-Noguer [2017], do not generalize and require the network to

be retrained for each dataset it is applied to. Thus these approaches have different networks

for each specific applications. This requires the capture of new data in each scenario to

retrain the network. Our approach was aiming for a single tracking algorithm that could

generalize to any video sequence, and we have shown that it is possible. We are still hopeful

that improvements in silhouette extraction can further increase the accuracy of our results.
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Chapter 6

Conclusion

To conclude, the research presented herein aimed to find a simpler approach to the problem

of human pose tracking. Simplicity here refers to a reduced level of instrumentation both

with respect to the scene in which the tracking occurs and with respect to the subject being

tracked. To this end, our approach requires a single video camera and does not rely on any

sensors or markers attached to the model. To accomplish this task, we used a generative

model that relies on biomechanical data and returned to the foundations of computer vision

to explore representations and features less commonly used in recent literature. The inte-

gration of modern approaches such as deep learning allowed us to develop a computational

framework that can successfully track complex articulated poses. Through careful experi-

mentation, we have demonstrated that our approach works well in ideal cases, and been able

to show under which less than ideal conditions it succeeds, and have shown situations where

it fails. Most importantly, the experiments in Chapter 5 allowed us to determine that the

accuracy of the feature extraction is the most crucial factor to enable accurate tracking.

The key finding of the thesis is that while occlusions inevitably result in ambiguity,

silhouettes are valid features to track highly articulated objects when dealing with monocular

images. We explore this area by providing a survey of methods used in the literature to

compare the similarity of silhouettes and determine how well they correlate to changes in

114



the pose of the model generating the silhouette. We detailed a set of experiments, and

presented their results in Section 2.3. This careful study of silhouette comparison metrics

has shown that for the task of human tracking, computing the exponentiated pixel count

difference provides the most reliable metric. Through experimentation in Chapter 4, the

particle filter approach we describe in Section 2.4 is shown to be able to resolve ambiguity

over time, in most cases.

We have shown that synthetic data can be used throughout the development of a complete

tracking system. We have also demonstrated that synthetic data can generalize to real

world data given accurately extracted silhouettes. We first used it as part of our silhouette

comparison metrics to more evaluate the various approaches in a common, controlled, frame

of reference. The second use of synthetic sequences was in Chapter 4 to tune the various

parameters of our tracker to improve overall accuracy. The third was in Chapter 5 to

generate examples in order to train a CNN to map directly from silhouette space to pose

space. This was initially done solely for the purpose of initialization, but ended up being

used for particle propagation when tracking human models. Finally, synthetic data was used

to evaluate the performance of our tracker under a variety of scenarios.

Another important contribution that stems from our research, from an engineering per-

spective, is the development of the tracking framework itself. We have shown our framework

to be adaptable to different models, and flexible enough to allow different motion priors and

particle sampling strategies. As we use the particle filter as a tool to fuse predictions and

recorded data, we have also shown that additional sources of information can be added to

our framework.

6.1 Further Work

As we have shown that the silhouette segmentation is the biggest limiting factor in the

accuracy, and in most case, functionality of our tracker, a more careful review of segmentation
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algorithms could prove to be the next logical step toward obtaining a tracker that generalizes

more readily to real-world sequences.

Along the same line of thought, standard data augmentation techniques [Witten et al.,

2016] targeting known issues with silhouette detection could also be used to provide a larger

coverage of silhouettes that might be encountered in real video sequences. These issues

include the addition of shadows and noise as well as removing limbs that may be mislabeled

when segmenting the silhouette.

As the models used to train the CNN are generated from parameters in MakeHuman

[Team, 2001], we could leverage that additional data in a future version. By adding certain

parameters to the pose space, we could try and obtain approximations of age, sex, etc. This

additional data could also enable us to select a model from a database to maximize similarity

to the subject being tracked. By changing the mesh model used to evaluate particles, we

should get better tracking performance as the silhouette of the selected model might better

match the observed silhouette. This data may also be valuable for certain applications

such as targeted advertising, where the additional information could be used to provide

advertisements based on the age and sex of the viewer.

As seen in Section 2.4.1, we can use a neural network to generate silhouettes from pose

vectors. It may be possible to replace the renderer from our framework with this network.

The possible advantage is that by training this network with a wide variety of 3D human

models, we could generate a “pseudo” silhouette that would capture how different models

would look with the given pose. The generated silhouette would be more of a likelihood map

of which pixel should belong to the silhouette than a clear silhouette. Figure 6.1 provides an

example of what such a generated silhouette could look like. The pixel count metric could

then be replaced by a sum of squared differences to compute the weight of the particles. This

could help the system generalize better to different body shapes. The network could also be

trained to take into consideration common segmentation issues, as discussed previously.

While outside the scope of the current thesis which aims to work on monocular video
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Figure 6.1: Example “silhouette” generated by a neural network that encodes the appearance
model of multiple human body shapes.

sequences, we have modified our tracker to work with multiple cameras. The addition of a

second camera roughly halves both the pose error and the end effector position error in the

small scale tests. As this is not directly related to the goals of this document, the results of

these experiments are not reported here, but are available on the companion website. The

most important aspect of this experiment is that it shows that our approach is extensible

and can integrate information from more sources to reduce ambiguity. While we have only

tested this on the small scale model, the use of multiple cameras might improve the tracker

for real sequences as well. Without going into too much detail, integrating multiple cameras

only requires the rendering of an additional virtual silhouette per addtional camera for each

particle in the filter. The major downside is thus that adding a camera roughly doubles the

computational cost.
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