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Abstract

This project involves implementing a method to detect human beings and pieces of luggage in im-

age sequences recorded in public environments. The goal of this project is to recognize potential

security events such as loitering, luggage theft, and unattended luggage. The human tracking stage

is accomplished by using a Bayesian multi-blob human tracker known as BraMBLe. This project

demonstrates some of the critical aspects that need to be considered for such applications including

the effect of camera positioning and the importance of proper training sequences. Throughout this

report, it becomes clear that a perfect detection system is probably not possible to implement, but

that the results are surprisingly accurate.

Several videos demonstrating this project in action can be found at

http://cim.mcgill.ca/∼ olivier/ECSE529

http://cim.mcgill.ca/~olivier/ECSE529
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0.1 Introduction

In recent years, public environment security and surveillance have become a growing concern. The

obvious solution to this problem has been to install an increasing amount of security cameras. As

more and more of these cameras are installed, the number of human operators required to monitor

the constant streams of video become problematic. Computer vision scientists from around the

world work to make the quantity of information more manageable by using various methods to

determine when security events happen and to attract the human operator’s attention toward these

potential threats.

There is a large quantity of published papers on the topic of human tracking. For this reason,

only those published in the past decade were considered. Amongst the proposed methods are

some based on Kalman filtering ([3],[1]) to determine the position and trajectory of humans over

time, but often overlook potential occlusion problems. Other methods use data from sensors more

advanced than standard cameras. Those often involve infra-red sensors ([4]) or depth information

acquired from laser scanners ([7]). Sadly, only image data is provided for the current project.

The paper chosen ([9]) uses Bayesian learning ([6]) to detect and track people in images, which,

according to the author, provides robustness towards partial occlusion problems.

0.2 Human tracking

The first step of the proposed project is to detect humans. For this task, the paper chosen [9] uses

a modified version of a Bayesian multiple-blob human tracker called BraMBLe. It was modified

to allow for extended use of the system by allowing the background and foreground models to be

dynamically updated. These modifications are not required for the current project as the program

is only meant to run for a short amount of time and that the environment conditions are fairly

constant. For this reason, the BraMBLe tracker was implemented according to [6], without the

modifications suggested in [9]. From the four provided camera orientations, the fourth was chosen

because it is the one closest to the orientations of the cameras used in [9] and [6].

0.2.1 Image Filtering

To comply with the methodology of [6], the image is converted from the RGB color space to the

YCbCr color space using the equations 1 through 3. In these equations, R, G, B stand for the
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intensity of the red, green and blue channels, respectively; Y stands for the luma value, and finally,

Cb and Cr stand for the blue and red chroma difference values, respectively.

Y = 0.299 ·R + 0.587 ·G+ 0.114 ·B (1)

Cb = −0.169 ·R− 0.331 ·G+ 0.499 ·B + 128 (2)

Cr = 0.499 ·R− 0.418 ·G− 0.0813 ·B + 128 (3)

To get a manageable amount of useful information about the image, a 5 pixels by 5 pixels grid

is placed on the image. At each position of this grid, 2 filters are applied to each of the three color

channels, resulting in a response vector containing six values. The first filter is a Gaussian filter

with equation shown in 4 and the second is a Laplacian of Gaussian filter, or, as they call it, a

Mexican hat filter, with equation shown in 5. As can be seen in their equations, both of these

filters are centered around the origin (µx = µy = 0) and are radially symmetric (σx = σy = σ).

FGaussian(x, y) =
e−(x

2+y2

2σ2
)

2πσ2
(4)

FMexicanHat(x, y) =
e−(x

2+y2

2σ2
)

πσ4
·
(

1− x2 + y2

2σ2

)
(5)

As per the instructions in [6], the size of both filters was set to 5 pixels by 5 pixels and the

standard deviation (σ) was set to one third of that size, as suggested in [10].

0.2.2 Coordinate System

The calibration data for the cameras used when capturing the sequences is provided as an xml

file containing all of the pertinent parameters. The calibration was found using the Tsai camera

model. This camera model allows one to find the two-dimensional coordinates, on the image plane,

equivalent to any given real world three-dimensional coordinates. This conversion is made using the

equations found in [5]. The only tricky part is that it is required to solve an under-determined third

order system of equations, which inevitably results in multiple possible solutions. For simplicity,

an existing implementation of the method was used [11]. Figure 1 shows that the method works

fairly well by placing the X, Y, and Z axis over an empty image (X is Red, Y is Green, and Z is

Blue). From figure 1(c), it can be noted that the precision, while sufficient for the needs of this

project, is not perfect, as the lines are not exactly aligned with the floor markers.
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(a) Empty Image (b) XYZ Axis over the image (c) Ground Plane of the image

Figure 1: Result of mapping 3D points to the 2D image plane using the Tsai camera calibration

method.

z
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x

(x, 0, z)

αwh

αsh

h

wf

wwθ

wsθ

wh

Parameter Description

x Floor position along the x-axis

z Floor position along the z-axis

wf Radius of the feet circle

ww Radius of the waist circle

ws Radius of the shoulder circle

wh Radius of the head circle

h Total height

θ Rotation Parameter

αw Ratio between the height of the

waist and the total height

αs Ratio between the height of the

shoulder and the total height

Figure 2: Graphical representation of a generalised cylinder and definition of all parameters
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0.2.3 Human template

The BraMBLe tracker uses a generalised cylinder model to approximate a generic human shape.

Such a cylinder, with all of the associated parameters, is shown in figure 2. The θ parameter is used

to approximate rotation of the human by scaling the radius of the waist and shoulder circles. It is

merely an approximation, but prevents having to compute sines and cosines to draw the cylinders

onto the image plane. In order to implement temporal tracking of objects, three extra parameters

are associated with each generalised cylinder that are not shown in figure 2. Those are a unique

identifier, to distinguish each object from the others, and two velocity components, in the X and

Z directions, used to predict the next probable position of the human.

To determine the projected shape of this model onto the image, a plane (light blue) orthogonal

to both the ground plane and a line from the camera to the floor position of the cylinder is defined,

as seen in figure 3. The points of intersection between the circles representing the generalised

cylinder and the orthogonal plane are shown as red points. These points correspond to the vertices

of the polygon that will be used as the human shape template for the Bayesian learning algorithm.

z

y

x

Figure 3: Generalised cylinder intersected by a plane (pale blue) orthogonal to the x-z plane and

the line between the camera position (blue dot) and the floor position of the cylinder.

An approximate rendering of such a generalised cylinder is shown in figure 4. The contour of

the shape is shown in red, the main axis of the cylinder is shown in green and locations of filter

responses that are inside the area of the cylinder are shown with small blue circles. Determining

whether a given two-dimensional coordinate is inside the polygon formed by the generalised cylinder
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Figure 4: Approximate rendering of a generalised cylinder

is a computational geometry problem commonly referred to as “point in polygon inclusion”. It is

solved by using the Jordan curve theorem [8]. The method requires one to draw a straight line

segment (horizontal or vertical for simplicity) from the point in question to the edge of the image

and count the number of times this line intersects with the boundaries of the polygon. If the

number of intersection is odd, the point is inside the polygon and if the number of intersections is

even (including 0 intersections), then the point is outside.

0.2.4 Background-Foreground Segmentation

In order to determine the probability of a given filter response being generated by a foreground

object, Bramble uses two distinct models: one for the background and one for the foreground.

Both of these models are learned using standard k-means algorithms, but on different types of

data.

Learning the background model is done using a set of training images (in the current case

approximately 900 frames) containing as little foreground activity as possible (ideally none). At

each of the position of the filter grid, the k-means algorithm is applied to find a mixture of four

Gaussian components. This allows for periodic changes in the background to be learned and

included in the models. An example of such a periodic event would be a blinking light, for which

each of the two states (on and off) would be taking into consideration by one of the four Gaussian

components. Basically, what this means is that each position of the image has a different trained

background model with four Gaussian components, each with its own mean and covariance matrix.

Given any location g and its associated filter response vector zg, the probability of zg being

generated by the background can be written as in equation 6, in which N stands for normal
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(Gaussian) distribution, µk
g is the mean of the kth learned Gaussian component at location g,

Σk
g is the covariance matrix of component k at g, δb and τb are two small constants. According

to [6], adding a small perturbation (δbI) to the covariance matrix “is sufficient to suppress false

foreground responses to shadows”. Another good reason for adding this perturbation is to prevent

the determinant of the covariance matrix of ever being zero, which in turn prevents possible division

by zero. Similarly, the addition of τb prevents problem which could arise when taking the log of

the probabilities later on, by making sure that the probability is never 0. According to [6], the two

constant values should be τb = 3 ·10−13 and δb = 100. These values were found to work well. From

equation 6, it can also be noted that all of the components have the same weight, which makes

learning the model slightly simpler.

p(zg|background) =
4∑

k=1

1

4
N (µk

g ,Σ
k
g + δbI) + τb (6)

The foreground model is trained in a different way. Only sixteen Gaussian components are

learned for the whole image. To make sure that the training focuses on foreground objects, only

location whose filter responses have a weak probability of being generated by the background are

included in the training data. Again, a few hundred frames of training were used.

Once the model is learned, computing the probability that a given filter response vector zg

at a position g has been generated by a foreground object is similar to what was shown for the

background model. Equation 7 shows how to compute such a probability. The biggest difference

between equations 6 and 7 is that the mean and the covariance matrix do not depend on the

location, only on the Gaussian component. As indicated in [6], a value of τforeground = 3 · 10−13

yielded the best results.

p(zg|foreground) =
16∑
k=1

1

16
N (µk

foreground,Σ
k
foreground) + τforeground (7)

It is important to remember that the normal distributions described in 6 and 7 are multivariate

normal distributions. In both equations, σ is always set to a diagonal approximation of the

covariance matrix.

Figure 5(b) demonstrates that even if there is no one walking in the foreground, the background

probabilities near the center of the image are quite low. Similarly, in figure 6(b), part of the

torso of the person walking through the scene has a high probability of being generated by the

background. This is because the BraMBLe tracker’s methodology assumes a static background
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(a) Original Image (b) Background Probabil-

ity

(c) Thresholded Fore-

ground Probability

(d) Log-likelihood of an ob-

ject being in the foreground

Figure 5: Probabilities from learned background and foreground models applied to an empty image

during the training stage. This was not the case with the training data available. The background

training data provided is “empty” in the sense that there are no human beings located in the

main part of the scene, but there is a crowd walking around in the background, near the center

of the image. This confuses the learning algorithm and make the learned model for these pixels

unreliable. This region of the image will be referred to as the “dead zone”, where reliability is very

low. Because of this zone, figures 5(d) and 6(d) show that the segmentation between foreground

and background is not perfect, as some parts of foreground objects are detected as background

and vice-versa, but the results should be sufficient to compute the likelihood of human positions.

One can also note that the results are only slightly worse than to those of [6] in terms of noise

and misclassification. This difference of quality can be attributed to the fact that the background

training sequence used in [6] was truly static.

(a) Original Image (b) Background Probabil-

ity

(c) Thresholded Fore-

ground Probability

(d) Log-likelihood of an ob-

ject being in the foreground

Figure 6: Probabilities from learned background and foreground models applied to an image

containing foreground objects

The effect of the “dead zone” is clearly shown in figure 7, which shows a sequence of images

when someone walks across the image. During the first few frames, the body is almost fully
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detected as foreground (the head is partly misclassified). Then, as the person moves toward the

center of the scene, its head and torso become misclassified due to the unreliable “dead zone”.

0.2.5 Computing the likelihood of an hypothesis

An hypothesis, in the context of this project, is defined as f[inite set of possible human locations

and parameters (a set of generalised cylinders). The likelihood of an hypothesis being accurate is

based on the probabilities found in the background/foreground segmentation part.

The procedure from [6] is followed to compute the likelihood of an hypothesis. The first step

of this procedure is to make sure that the hypothesis is at least physically plausible by discarding

it, if the distance between the floor coordinates of any pair of generalised cylinders is smaller than

0.5 meter. This prevents multiple persons from occupying the same space. The second step is to

sort the humans using their distance from the camera as the sorting key. To reduce computational

cost, one can use the square of the distance as the sort key, thus preventing the computation of

multiple square roots. No specific sorting method is specified in [6], so the sorting was made using

the bubble sort method. Next, one should generate an array to hold a label (l) for each filter

position (g). These labels will be referred to as lg. Initialize this array with zeros (no label) and

set the initial likelihood to 0. Now, one should find the filter locations inside each generalised

cylinder, in order. (the blue circles in figure 4) At each of these location, if lg is 0, then update lg

with the index of the current generalised cylinder and add the value of yg to the likelihood. If lg

is not 0, then that filter location has already been considered by a generalised cylinder closer to

the camera. This only happens when a closer cylinder occludes another cylinder further from the

camera and prevents adding yg twice to the likelihood. After considering each generalised cylinder,

the likelihood has been found.

To demonstrate the concept in a simple manner, figure 8 shows the likelihood of an hypothesis

for scene configuration. The likelihood when the person is directly inside the polygonal projection of

the generalised cylinder is shown in 8(c) to be very high, as it should be. Similarly, when the person

is completely outside the polygon,as shown in 8 (a) and (d), the likelihood is very small, but non-

zero. The reason why the likelihood is non-zero is due to the noise in the foreground/background

probabilities, mostly in the “dead zone” discussed earlier. Finally, 8(b) shows that the likelihood

is somewhere between the maximum from (c) and the minimum from (a) and (d). This makes

sense as the person is only partly inside the polygon.
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(a) Sample frame 1 (b) Sample frame 2 (c) Sample frame 3

Figure 7: Effect of the “dead zone” clearly shown by the dissapearing head and torso of someone

walking across the screen

(a) Likelihood=12.889 (b) Likelihood=64.324 (c) Likelihood=338.652 (d) Likelihood=11.663

Figure 8: Evolution of the likelihood of a sample hypothesis for different scene configurations
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0.2.6 Camera Problems

At this point, it became clear that the “dead zone” might create a bigger problem than anticipated.

Fortunately, multiple camera orientations are provided. It was found that the first and second

cameras have a similar problem, but that the part of the scene where the action takes place contains

less clutter during the training sequence of the third camera (figure 9(f)). To further optimize the

results, the images from the third sequence were preprocessed (figure 9(b)) by applying two filters:

an auto-levels filter to make colors more distinguishable and a gaussian blur filter to ideally smooth

out some of the noise and get better defined foreground blobs. The background and foreground

were trained for this new camera (figure 9(c)) and the Tsai calibration was applied to the image

to get a coordinate system (figure 9(d)) and a ground plane estimation (figure 9(e)).

(a) Original image (b) Preprocessing (c) Likelihood of objects being

in the foreground

(d) Coordinate System (e) Estimated ground plane (f) Portion of the floor consid-

ered by the tracker

Figure 9: Third camera preprocessing, calibration and probability test

0.2.7 Particle Filtering

The BraMBLe tracker uses particle filtering to determine where humans are located. The idea of

particle filtering, as used by BraMBLe, is to generate a large amount of possible scene configura-
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tions, each called a particle, and from the likelihood of these particles, try to determine the real

configuration of the scene.

0.2.7.1 Particles

Particles contain a finite number of generalised cylinders; they each represent a possible config-

uration of objects in the scene. For the system to work properly, particles need to be updated

at each time step (video frame). The update rule is quite simple; each generalised cylinder has a

one percent chance of exiting the scene (disappearing) and there is a two percent chance of a new

cylinder appearing. This is what allows an arbitrary number of objects to be tracked at the same

time.

The generalised cylinders contained by the particle also need to be updated at each time step.

The same equations as those presented in [6] were used. Furthermore, there was no need to try

different values for the means and covariances of each parameters, because these values have a clear

physical meaning and are logical. For example, the average height of a human is approximately

1.8 meters, as noted in [6].

The likelihood of a particle is defined as the sum of the likelihoods of the generalised cylinders

it contains. Once multiple particles exists and that their respective likelihoods are known, it is

possible to display those that have a higher probability of being accurate. The value chosen as the

display threshold varies according to many factors. As the likelihood of a particle is the sum of

other non-normalized probabilities, the likelihood depends on the number of cylinders per particle

as well as the probability density function of the foreground/background segmentation. It was

found that, in most cases, values below 2.5 allowed too many cylinders to be drawn. On the other

hand, values above 3 did not allow enough cylinders to be drawn to determine the position of the

humans accurately. Figure 10(a) shows the rendering of a set of particles using a threshold value

of 2.75. For clarity, instead of drawing the full projections of the cylinders, figure 10(b) shows only

the floor position of the possible humans. In figure 10(b), it is possible to see that the density of

points is higher around the true position of the humans.

0.2.8 Marginalization of the results

To get a single position for each human from the set of points shown in 10, one needs to find the

center of the zones with higher density of generalised cylinders. The instructions for this step in
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(a) Most probable human locations and

shapes

(b) Floor position of the most probable

human locations

Figure 10: Display of high likelihood particles

[6] are fairly vague, and [9] does not go into any details about how this step was implemented.

Considering the type of data, using a k-means clustering algorithm should be able to find the

correct locations of humans. The clustering was made using ten clusters and thus a maximum of

ten humans can be tracked at any given instant, but this number can easily be changed to allow

for greater flexibility. Once all of the points are labeled according to the cluster they belong to, the

probability of that cluster being a human is defined as the sum of the likelihoods of the individual

points.

While being fairly efficient, this method often yields false positives. Fortunately, these usually

appear and disappear very quickly. For this reason, most of them are discarded by adding a frame

counter to each Gaussian cluster and only drawing the human shape if the counter is larger than

a certain value. A value of two frames was found be be the smallest value capable of discarding

most of these false positives.

0.2.9 Limitations of the human tracker and possible improvements

The most important problem with the tracker is that if two humans are close to one another, their

respective identification numbers can be swapped. This problem is also mentioned in [6]. It could

be solved by applying a method similar to the luggage identification method detailed in [9], which

uses a learned mixture of Gaussian distribution for each piece of luggage to identify them based

not only on their location, but also on their appearance. Another, simpler solution, would be to

compute an approximate trajectory vector for each tracked human. This would allow to distinguish
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between two persons crossing paths by knowing the direction in which they are traveling. The

second problem is when a single human is detected as two different humans. Again, if each detected

human had an estimated velocity, one could notice that two detected humans would be following

the same path with the same velocity and assume that they are a single human being.

0.3 Luggage Detection

In the framework of this project, we are only interested in detecting abandoned luggage or theft.

Both of these events involve bags being placed on the ground. For this reason, only stationary

luggage needs to be detected. This greatly simplifies the task. To reduce the computational

complexity further, only a finite region of the image is considered as potential location of luggage,

as seen in figure 11(b).

Luggage detection requires a few steps. The first is to discard the probabilities outside of the

considered region, as shown in figure 11(c). Then, thresholding the remaining probabilities allows

to find blobs representing likely foreground objects (figure 11(d)). The instruction in [9] say that

luggage should be found by finding blobs with an area greater than a certain value. It was found

that a minimum distance value of nine [assuming circular blobs with radius 9, the minimum area

is approximately 250 pixels] was able to find bags. To find such regions, a grass-fire distance

transform is applied to the thresholded image, as seen in 11(e). From the distance transformed

image, one can directly assess the size of blobs and find their centroids and bounding boxes, as

seen in figure 11(f).

This, obviously, only works when all foreground blobs are pieces of luggage. To make sure

humans in the foreground are not considered as bags, the probabilities inside regions occupied by

humans are set to zero, as shown in figure 12. Some pixels from the human remain, but they do

not constitute a large enough area to be detected as a bag.

Using a few carefully chosen frames from the seventh scenario, it is possible to see a bag and

two humans being properly recognized (figure 13(a)). A few frames later, we can see the person

labelled “three” picking up the bag (still recognized as a bag) (figure 13(b)) then walking away

(figure 13(c)), when the bag is no longer being detected as such. Finally, the person leaves the

screen (figure 13(d)) and neither the bag nor the person is being located in the image. This

sequence shows that the system seems to work on basic test sequence.
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(a) Original image (b) Considered region (c) Probability inside the con-

sidered region

(d) Thresholded probabilities (e) Distance transform (f) Approximate bounding box

Figure 11: Luggage detection

(a) Original image (b) Probabilities (c) Thresholded probabilities

(d) Human detection (e) Remaining region

Figure 12: Removal of probabilities known to be generated by a human

19



(a) Bag and humans detected correctly (b) Human 3 picks up bag, bag still de-

tected

(c) Bag picked up, bag not being de-

tected

(d) Human left scene with bag

Figure 13: Luggage detection test
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0.4 Results

To detect security events and make information more appealing, an overlay was added to the

image. The top left part shows the current frame number, and the bottom part has three colored

indicators for the three types of events to be detected.

0.4.1 Loitering Detection

Loitering is to be detected in scenarios one and two. It was correctly detected only in scenario

two, where a few key frames are shown in figure 14. The yellow loitering alarm is set when a

person loiters for 750 frames, or half the time defined as loitering in the PETS instructions. The

red loitering alarm is set only after a person is detected for 1500 frames, equivalent to one minute.

The reason why the program does not properly detect loitering in scenario one is that there are

many people walking across the screen. As mentioned before, when two humans cross path, the

program has difficulty distinguishing between the two and their labels often get swapped. This

prevent the program from detecting the loiterer for the full 1500 frames required.

As there is no ground truth available, it is hard to assess the accuracy of the detection. Noting

that, in the second scenario, the loitering alarm (red) is activated after 1726 frames, it is possible

to determine that the loitering human was first detected between frames 226 and 227. Figure 15

shows that in frame 227, the human labeled 0 is first detected. One can notice that the program

only detects the person once a large portion of the body is visible on screen, and so the true frame

number when the loitering alarm should be activated is probably a bit before frame 1726.

0.4.2 Abandoned Luggage Detection

The greatest problem when detecting bags is that if the bag is too large, it can generate enough

foreground probabilities to be detected as a human. Such a case happens in scenario 8, as seen

in figure 17(a). As detected bags are static objects, if a bag is detected as a human, it eventually

leads to the activation of the loitering alarm.

The second problem about trying to detect abandoned luggage is that bags are detected as

blobs on the two-dimensional image plane. According to the PETS definition of abandoned, the

state of the alarm depends on the distance between the owner and the bag. As we do not know the

position of the luggage in three-dimensional space, determining the distance between a bag and a
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(a) Frame 0, no alarm (b) Frame 975, no alarm

(c) Frame 976, yellow loitering alarm (d) Frame 1725, yellow loitering alarm

(e) Frame 1726, red loitering alarm

Figure 14: Some key frames from the second scenario, showing loitering detection in action
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(a) Frame 226 (b) Frame 227

Figure 15: First detected frame of the loiterer from scenario 2

human is difficult. It would be possible to find the real world coordinates of the bag, but it would

involve some fairly complex computations. For this reason, the measure of distance between bag

and human was made on the two-dimensional plane. While not being as accurate, it provides a

good enough approximation for the present project. It was decided that a bag is abandoned when

none of the detected humans has a projected floor position inside a radius of 50 pixels from the

centroid of the bag. Figure 16 shows that the alarm is properly set when an abandoned bag is

detected.

(a) No luggage, no alarm (b) Abandoned luggage, alarm set

Figure 16: Proper function of the abandoned luggage alarm

False alarms can happen in many cases. One such case is when a human is carrying a piece of

luggage and stays idle for too long. This situation happens in scenario 8, as shown in figure 17(b).
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(a) Piece of luggage being detected as a hu-

man

(b) False abandoned luggage alarm

Figure 17: Problematic cases of the luggage detector

0.5 Conclusion

By carefully reviewing the results presented earlier, it is clear that the method presented in [9] is

valid as it has been shown to work on quite a few cases. It has also been shown that the method

might not be robust enough to be usable in general cases, but that once all of the parameters and

threshold values are determined, the results are sufficient. Overall, while not entirely solving the

surveillance problem, the combination of Bayesian learning and particle filtering method presented

here is a step in the right direction for automated security systems. The report will conclude with

figure 18, which demonstrates proper detection of four distinct humans and one piece of luggage.

This shows how promising such systems are.

Figure 18: Proper detection of four distinct humans and one piece of luggage
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