
3D Interpolation Using Co-Helicity

Olivier St-Martin Cormier
ID:260234106

Email: olivier@cim.mcgill.ca

Center for Intelligent Machines
McGill University

April 25, 2010

Abstract

While conventional methods to infer structure from a point cloud provide great results
with man made structures, other, more organic forms can be very hard to describe. This
is particularly the case with fiber-like formations such as trees, which do not usually
contain long straight line segments. The current project aims to represent trees as a
set of helical curve segments. The concept of cohelicity is used to infer cures joining
points in the data set. Relaxation labeling is then used to maximize support between
neighboring points.

1 Literature Review

This section presents a brief summary of the papers on which the current project is based
on. More emphasis is given to the parts that are directly related to the project. Only
the first two sources will be summarized as most of the concepts from the [Savadjiev,
Zucker and Siddiqi]3 paper will not be implemented in the current project.

1.1 Trace inference, curvature consistency, and curve detection1

This first paper covers three distinct topics, as its title indicates. The first, trace in-
ference, presents the problems related to loss of information during the 2D projection
and discretization stages of image acquisition. The authors then discusses the impor-
tance of not only inferring information about traces, but also about the tangents and
the curvature of these traces. It is mentioned that once these parameters are known, a
continuous curve can be synthesized. The text then describes how to extract tangent
estimates using a set of convolutions. This first topic, while being very important in
most cases, does not have a big influence in the current project.

The second topic is curvature consistency. It details three concepts used to determine
whether sets of points belong to a single curve. Those are cocircularity, curvature classes,
and lateral maxima.

Cocircularity between a pair of points is used to determine if there exists a circle
satisfying the following two conditions: it passes through both points, and it is tangent
to the orientation estimates at both points. To check for cocircularity between two
points, a line is first drawn to join them and the angles between this line and the
orientation estimates are computed. If the magnitude of both angles is the same, the
points are said to be cocircular. This concept is shown in figure 1 (a), where points 1
and 2 are cocircular because |θ1| = |θ2|. If curvature information is know at each points,
it is possible to determine whether they belong to the same curve or not, even if they
appear to be cocircular. Figures 1 (b) and 1 (c) show how a pair of points with the same
”spacial configuration” that could easily be cocircular (b) can belong to two distinct
curves (c).

P1

P2

θ2

θ1

(a) Cocircular

P1

P2

(b) Cocircular and compatible
curvature classes

P1

P2

(c) Cocircular but incompatible
curvature classes

Figure 1: Distinction between cocircularity and curvature classes

2

The last presented concept related to curve inference is the use of lateral maxima. It
allows to determine the exact sub-pixel position of a curve, thus decreasing the effects
of discretization.

The final topic covered by this paper is relaxation labeling. Each pixel in the image
has a set of labels consisting mostly of orientation estimates. The goal of relaxation
labeling is to adjust the weights of these labels in order for each label to be consistent
with labels from neighboring nodes.

The [Parent and Zucker]1 paper presents the basis for curve inference in two dimen-
sions, but as will be seen later, some of these concepts intuitively extend in the third
dimension. As the current project aims to detect three dimensional space curves, it will
rely on the information from this paper.

1.2 3D Curve Inference for Diffusion MRI Regularization2

This second paper extends the cocircularity concept by demonstrating a method to
obtain a similar information in three dimensions. Instead of trying to find a circle
passing through two points on a plane and tangent to two orientation estimates, one
tries to find a helix that passes through three points and tangent to three orientation
estimates. A mathematical description of an helix is then presented. An algorithm to
determine cohelicity is then detailed. Once three points and their respective tangents
are known to be cohelical, the parameters of the helix passing through them can be
recovered and the helix can be redrawn. The next part of the text shows that by simply
replacing cocircularity by cohelicity, the same relaxation labeling process as described
in the [Parent and Zucker]1 paper can be applied to get a set of consistent labels.

x

y

c

r

z

Figure 2: Helix of radius r and pitch c drawn
from θ0 = 0 to θ1 ≈ 3.3π

This text is quite short, but it ad-
dresses a clear problem and goes straight
to the point. Most of the concepts con-
tained in this paper will be described in
more details in later sections of this report.
This is because this paper is the basis for
this project.

2 Helix

Helices are smooth 3D curves that lie on
the surface of a cylinder and whose tan-
gent at any point has a constant angle
with the main axis of the cylinder. A he-
lix is determined by two main parameters:
the radius of the cylinder on which it re-
sides, and the distance between two loops,
called the pitch and denoted by c. [dis-
tance between two loops = height travelled

3

between i and i + 2π, where i is any real value] A sample helix and its parameters is
shown in figure 2. The neat thing about helices is that if one was to project each point
of an helix onto a plane perpendicular to the main axis of the helix, a circle would be
obtained. This fact will be used in the algorithm to determine cohelicity that will be
shown in a later section. The general equation of an helix having the z axis as its main
axis is given in equation 1.

H(t) =
(
x(θ), y(x(θ), z(x(θ)

)
=
(
r cos(θ), r sin(θ), cθ

)
(1)

To determine cohelicity, we will also need the equation of the tangent to the helix. The
derivation is shown in equations 6 through 10 and the final result is shown in equation
5.

T (t) =
H ′(t)

‖H ′(t)‖
(2)

=
(− r sin(θ), r cos(θ), c)

([−r sin(θ)]2 + [r cos(θ)]2 + c2)1/2
(3)

=
(− r sin(θ), r cos(θ), c)

(r2[sin2(θ) + cos2(θ)] + c2)1/2
(4)

=
1√

r2 + c2
·
(
− r sin(θ), r cos(θ), c

)
(5)

Even if it is not strictly required, the derivation of the normal and the equation of the
normal to an helix are shown in equations 6 through 10 for completeness.

N(t) =
T ′(t)

‖T ′(t)‖
(6)

=
(− r cos(θ),−r sin(θ), 0)

([−r cos(θ)]2 + [−r sin(θ)]2 + 02)1/2
(7)

=
(− r cos(θ),−r sin(θ), 0)

(r2[sin2(θ) + cos2(θ)])1/2
(8)

=
(− r cos(θ), r sin(θ), 0)

(r2)1/2
(9)

=
(
− cos(θ),− sin(θ), 0

)
(10)

3 Cohelicity Detection Algorithm

This section will detail the steps required to determine cohelicity as presented in algo-
rithm 1 of [2]. Some steps were slightly modified to adapt the method to the current
problem, but the overall process remains very similar. Throughout this section, Pn, vn

4

and θn for n ∈ {1, 2, 3} will be used to denote the three points, the three tangent vectors,
and the angle of the three points respectively. The presentation of this algorithm might
seem lengthy, but it represents the biggest part of the project.

3.1 Checking for Collinearity

Collinearity is a special case of cohelicity. It can be represented either by an helix having
a zero radius, in which case the cylinder on which the points of the helix lie would be a
line, or it can be represented by an helix with an infinite radius, in which case the helix
is locally perceived as a straight line. For three points and their respective orientation
estimates to be collinear, two conditions need to be checked.

h

P1
v1

P2
v2

P3
v3

Figure 3: Collinearity between three points

First, as shown in figure 3, the three points need to lie on a single line. The second
condition, which can also be seen in figure 3, the angle between the line formed by
the three points and the three orientation estimates needs to be zero. Checking for
collinearity during the first step prevents trying to compute a possibly infinite radius
at a later step, which could create problems [could also result in division by 0 in some
cases]. It also reduces the amount of computations required.

3.2 Find Main Axis of Putative Helix

As was mentioned earlier, helices have the property that their tangents have a constant
angle with their main axis. Thus, the difference between two of them is as shown in
equation 13, where i, j ∈ {1, 2, 3} so that i 6= j and points pi and pj are distinct, that
is, θi 6= θj.

vi − vj =
1√

r2 + c2
·
[(
− r sin(θi), r cos(θi), c

)
− ·
(
− r sin(θj), r cos(θj), c

)]
(11)

=
1√

r2 + c2
·
(
− r sin(θi) + r sin(θj), r cos(θi)− r cos(θj), c− c

)
(12)

=
r√

r2 + c2
·
(

sin(θj)− sin(θi), cos(θi)− cos(θj), 0
)

(13)

From which we see that the component in the z-direction is zero. Because of this, the
cross product of two such differences, as seen in equation 14, is solely in the direction

5

of the main axis. Note that in equation 14, it is assumed that i, j, k ∈ {1, 2, 3} so that
i 6= j 6= k and points pi, pj, and pk are distinct, that is, θi 6= θj 6= θk.

(vi − vj)× (vj − vk) =
r√

r2 + c2
·
(

0, 0, z
)

(14)

Where z is non-zero and has the form shown in 15. A nicer way to write equation 15 is
to set θ̂i = 0 and assume θ̂j = θj − θi and θ̂k = θk − θi. The reformulated expression is
shown in 16. It shows more clearly that z 6= 0 if θi 6= θj 6= θk. Further simplifications
are possible, but not required.

z =
(

sin(θj)−sin(θi)
)
·
(

cos(θj)−cos(θk)
)
−
(

cos(θi)−cos(θj)
)
·
(

sin(θk)−sin(θj)
)

(15)

z = − sin(θj) cos(θk − sin(θk) + sin(θj) + cos(θj) sin(θk) (16)

From this, we see that the main axis of an helix can be found by computing the cross
product of the vectors joining the tangent vectors. Only the case of an axis centered
around the z axis has been shown, but the method works for helices centered around
arbitrary vectors. This can be seen by simply applying a combination of vector rotation
and vector translation to the standard helix equation in order to recenter the curve
around any normal vector located at any position.

3.3 Find Two Dimensional Projections

−→πx

−→πy

π

v2

v3

v1

−→n

Figure 4: Vector projection onto plane π⊥−→n

Finding the projections of three dimen-
sional vectors onto a two dimensional sur-
face is what allows us to use some of
the concepts developed in the [Parent and
Zucker]1 paper. To do so, we need the
points from the helix to project to a circle
and for this reason, the surface onto which
the projection is done needs to be perpen-
dicular to the main axis of the helix, this
plane will be denoted as π.

The procedure to project a vector onto
a surface defined solely by a normal is to
first project the vector (denoted as −→v)
onto the normal (denoted as −→n) with the
use of equation 17, in which ‖ · ‖ repre-
sents the Euclidean norm. Figure 4 shows
graphically how an helix projects to a cir-
cle on a plane π.

proj−→n (−→v) =
〈−→v ,−→n 〉
‖−→n ‖2

· −→n (17)

6

Once this is done, The projection on π is found by taking the difference between
the original vector and the projection found previously. The method is summarized in
equation 18.

projπ(−→v) = −→v − proj−→n (−→v) = −→v − 〈
−→v ,−→n 〉
‖−→n ‖2

· −→n (18)

3.4 Find Radius of Putative Helix

O

P1

P2

P3

a

b

c

Figure 5: Representation
of a triangle (black), its
circumcircle (blue) and
the circumradii (red)

Once the three points have been projected to a plane, the
problem of finding the radius of the circumcirlce, aptly
called the circumradius, of the triangle formed by the three
points is a well-posed two dimensional problem that mathe-
maticians have been finding solutions to for centuries. The
circumcircle of a polygon is defined as the circle that passes
through all of the vertices of the polygon. This circle ex-
ists and is unique for all triangles. A diagram showing the
concept of a circumcircle is presented in figure 5. The most
widely used formula to compute the circumradius is shown
in equation 19, in which a, b, and c are the lengths of the
three sides of the triangle that can be easily found by the
Pythagorean theorem.

R =
a · b · c
4 · A4

(19)

In order to use equation 19, one first needs to know A4, the area of the triangle. Again,
there are multiple ways to find this value, but a nice way to do it is to use Heron’s
formula, shown in equation 20, where s is the semiperimeter (half the perimeter) of the
triangle, as shown in equation 21.

A4 =
√
s(s− a)(s− b)(s− c) (20)

s =
a+ b+ c

2
(21)

Using these equations to find the circumradius is efficient because it only requires
knowledge of the Euclidean length of the sides of the triangles, and so no trigonometric
functions are required.

3.5 Find Pitch of Putative Helix

The first step to finding the pitch of the helix is to find the angle between points 1 and
2. To find this, we can use the definition of vector dot product shown in equation 22,
where a and b are vectors, and θ is the angle between them.

〈a, b〉 = |a| · |b| · cos(θ) (22)

7

Equation 23 shows how to find the angle between two points.

θ2 − θ1 = arccos
(
〈 projπ(−→v1)

‖projπ(−→v1)‖
,
projπ(−→v2)

‖projπ(−→v2)‖
〉
)

(23)

Now, to find an expression for the pitch, we will first expand the dot product of the
tangents at point 1 and 2. This can be seen in equation 24.

〈−→v1 ,−→v2〉 =
1

r2 + c2
·
(
r2 · sin(θ1) · sin(θ2) + r2 · cos(θ1) · cos(θ2) + c2

)
=

r2 · cos(θ2 − θ1) + c2

r2 + c2
(24)

Isolating c in equation 24 yields an expression that can be used to find the pitch, which
is shown in equation 25.

c =

√√√√r2 · (〈−→v1 ,−→v2〉 − cos(θ2 − θ1))

1− 〈−→v1 ,−→v2〉
(25)

3.6 Check that Orientation Estimates are Tangent to the Pu-
tative Helix

Once all of the parameters of the helix are known, it is trivial to find the expected
value of the tangent at the three points being considered by using equation 5, derived
earlier. We can then verify that the three orientation estimates are indeed tangent to
the Putative Helix.

If they are indeed tangent to the helix, we have found that the three points are
cohellical, and we have also found all of the parameters of the helix. If it is not the
case, or if any of the previous steps failed, then the three points and their respective
orientation estimates are not cohellical. With this information, it should be possible to
draw the helix, if needed.

4 Relaxation Labeling

At each point, a set of labels are present, with each label representing an orientation
estimate. Each of these labels has an associated ”confidence” value pi(λ), that is, a
weighting factor to represent the importance of the label with respect to other labels
at the same point. The values of these ”confidence” values are normalized so that
their sum equals one. As the input data contains only one orientation estimate at each
point, there is only one label at each node, and thus the relaxation labeling problem
is greatly simplified. As we are working with cohellicity instead of cocircularity, the
support function found in the [Parent and Zucker]1 paper need to be changed a bit.
According to the [Savadjiev, Campbell, Pike and Siddiqi]2 paper, the support function

8

must be changed to that shown in equation 11, where pn(λ(m)) is the probability of label
λ(m) at point n and rijk(λ, λ

′, λ′′) is the cohellical compatibility between the three labels
at the three points.

si(λ) =
∑
j,λ′

∑
k,λ′

rijk(λ, λ
′, λ′′)pj(λ

′)pk(λ
′′) (26)

5 Input data

Figure 6: Plot of the input data

The input data for this project is a point
cloud representing a tree. This data set
was obtained by scanning a tree with a
LIDAR scanner. Data from multiple scan
angles were merged together to get a 360
degrees view of the tree. The data was also
preprocessed using a technique explained
in the [Harrison]4 paper in order to obtain
a Frenet-Serret frame at each point, that
is, a tangent, normal and binormal vector
is defined at each point. As the data set
contains 30947 distinct points, the amount
of memory required to load the data is
quite manageable. These steps are not
part of the implementation of the project,
but the program assumes that all of this
information is present in the input data.
An initial plotting of the input data, pre-
sented in figure 6 reveals a clear tree-like
structure. The most important thing that
can be noticed is that a large part of the
point cloud represents the ground plane.
From this, we can expect that quite a few
of the points on the ground should be de-
tected as collinear by the algorithm pre-
sented earlier.

If one has no prior knowledge of the settings in which the data was captured, one of
the following possibilities should be expected:

• The tree was scanned during the winter season – The tree has no leaves and thus
the helicoidal curves are representation of the branches. The result should resemble
a classic tree structure, and branching should be detectable.

• The tree was scanned during the summer season – The tree has leaves, and thus
most of the points are positioned on the surface of leaves instead of branches. The

9

result of this case would probably be a a set of helices enclosing a 3D region of
space.

• The tree was scanned during either the spring or autumn season – The tree has
some leaves, this is a combination of the above two scenarios.

6 Implementation

Efficiency was a key factor in the implementation choices. The [Savadjiev, Campbell,
Pike and Siddiqi]2 paper suggests precomputing the possible cohelical arrangements in
a circular neighborhood, and then use this precomputed data as a look-up table to
determine cohellicity. As the goal of the project was not to run the algorithm in real-
time, but rather to simply implement it, the decision was made not to implement such
a look-up table.

The goal was still to minimize run-time, but to compute everything on-line. For
this reason, the program was written in the c language, as it is very low-level and thus
allows to control the computer’s resources more efficiently than possible with numerical
programming languages such as the one presented by matlab.

To speed up run-time, whenever multiple actions need to be performed (ie, running
the algorithm on multiple point triplets), the program forks into different threads to
capitalize on the multi-core architecture of modern computers. The number of threads
can be set at compile time, this allows to adjust the program for different types of
processors.

It was chosen that when checking for cohellicity support, only the points within a
certain neighborhood around the initial point would be considered. The neighborhood
size that was chosen is a sphere of radius one. This is an arbitrary choice that greatly
depends on the scale of the data. In the present case, the whole tree fits in a cube of
side six, so considering a sphere of radius one is quite sufficient.

6.1 Display

[Figures for this part are shown on a separate page at the end]
In order to display results, the OpenGL graphic engine was chosen. This choice is

mostly due to the fact that it is one of the simplest three dimensional graphic library to
use. Also, it provides programmers with a comprehensive documentation library to ease
development. All of the figure that will be presented in this section are shown twice, as
viewed from two different vantage points. Showing two different representations of each
scene helps to perceive the third dimension. To help visualizing the coordinate system,
three colored line segments are drawn. The red segment represent the x axis, the green
represents the y axis and the blue represents the z axis. [Please note that the green axis
is hard to show as it is located on the green normal plane.]

To make sure that the algorithm was producing good results, it was tested on a set
of sample helices. Also, each step of the algorithm was initially tested individually. It

10

can be seen from figure 7 that the normal vector (shown in pink/purple [0xFF00FF])
and the normal plane (shown in green) of a sample helix can be correctly computed.

Next, figure 8 shows the projection of the sample helix onto the normal plane (normal
plane not shown). The blue points are the initial data points and the blue lines represent
the initial tangents estimates. The solid red lines and points represent the projections
and the dashed red lines are simply lines connecting the original points and vectors to
their projection. These lines are drawn to easily visualize the orthogonal nature of the
projections with respect to the normal plane.

Figure 9 shows that once the parameters of the helix are known, it is possible to
draw a smooth helical curve passing through the three points. As there is no smooth
curve plotting method supplied by the OpenGL library, one must draw a strip of line
segments to simulate smoothness. While this is not a problem when drawing a single
helix as in figure 9, it quickly becomes too expensive to draw smooth curves when a few
thousand helices need to be drawn. This is why the final program draws straight lines
between cohelical points in the final version of the program.

7 Results

Running the algorithm without relaxation labelling on the input data gives a somewhat
messy result, as can be seen in figure 10(a). If one was to start thresholding to show
only helices with a length greater than a certain amount, one can see that large helices
are found on the ground plane. This makes quite a bit of sense considering that most of
the points associated with the ground are collinear. This thresholding is shown in figure
10(b).

By using relaxation labelling, we expect to see a less noisy output as the helices
formed by orientation estimates with a small support should disappear. This, however,
was not the case. As seen in figure 11, the benefits of relaxation labeling are minimal, if
existent. Inspecting figure 11(a) closely reveals that the results are somewhat worse than
the ones in figure 10(a). Figure 11 was generated after running only a couple of iterations
of relaxation labeling, but as the results have not improved, one cannot expect much
better results after more iterations. There is no clear reason why relaxation labeling
did not work as it should, it might be due to an implementation problem, but multiple
reimplementation seemed to yield similar results.

8 Conclusion

Overall, the results were satisfying. It seems that when the tree was scanned, there
were leaves on it, but not so much as to prevent the detection of branches, which can
be clearly seen in figure 10.

11

References

1 Pierre Parent and Steven W. Zucker, Trace inference, curvature consistency, and
curve detection. IEEE Transactions on Pattern Analysis and Machine Intelligence
1989

2 Peter Savadjiev and Jennifer S. W. Campbell and G. Bruce Pike and Kaleem
Siddiqi, 3D Curve Inference for Diffusion MRI Regularization. 2005

3 Peter Savadjiev and Steven W. Zucker and Kaleem Siddiqi, On the Differential
Geometry of 3D Flow Patterns: Generalized Helicoids and Diffusion MRI Analysis.
International Conference on Computer Vision (ICCV) 2007

4 John Harrison, Efficient Initial Segmentation of Point-Cloud Data. Unpublished
2009

Figures

Figure 7: Normal vector and normal plane to three points and respective orientation
estimates

12

Figure 8: Projection of points and vectors onto normal plane

Figure 9: Redrawing of the helix

13

(a) Initial Helices (b) Helices lying on the ground plane

Figure 10: Results without relaxation labelling

14

(a) Initial Helices (b) Helices lying on the ground plane

Figure 11: Results with relaxation labelling

15

	Literature Review
	Trace inference, curvature consistency, and curve detection1
	3D Curve Inference for Diffusion MRI Regularization2

	Helix
	Cohelicity Detection Algorithm
	Checking for Collinearity
	Find Main Axis of Putative Helix
	Find Two Dimensional Projections
	Find Radius of Putative Helix
	Find Pitch of Putative Helix
	Check that Orientation Estimates are Tangent to the Putative Helix

	Relaxation Labeling
	Input data
	Implementation
	Display

	Results
	Conclusion

