Helix 0000	Co-Helicity	Algorithm 0000	Conclusion

3D Interpolation Using Co-Helicity

Olivier St-Martin Cormier

McGill University

April 8, 2010

Olivier St-Martin Cormier

McGill University

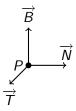
Introduction	Helix	Co-Helicity	Algorithm	Conclusion
000				

Goal of the project

Represent a tree by a cluster of fibers emanating from a small region of space

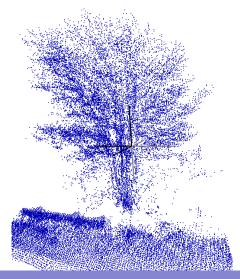
[src:http://www.flickr.com/]

Olivier St-Martin Cormier


Introduction	Helix 0000	Co-Helicity ○○	Algorithm 0000	Conclusion

Input Data

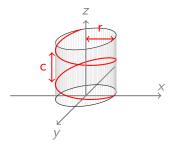
[src:http://www.wikipedia.org/]


- LIDAR Scan of a Tree
- 30947 Points
- Preprocessed data
- Frenet-Serret Frame at each point

Olivier St-Martin Cormier

Introduction	Helix	Co-Helicity	Algorithm	Conclusion
000				

Inital Data Representation


Olivier St-Martin Cormier

McGill University

Helix	Co-Helicity	Algorithm	Conclusion
0000			

Representation of a Helix

$$H(t) = \left(x(\theta), y(x(\theta), z(x(\theta))\right) = \left(r\cos(\theta), r\sin(\theta), c\theta\right)$$

Olivier St-Martin Cormier

Helix	Co-Helicity	Algorithm	Conclusion
0000			

Derivation of the Unit Tangent of an Helix

$$T(t) = \frac{H'(t)}{\|H'(t)\|}$$

=
$$\frac{(-r\sin(\theta), r\cos(\theta), c)}{([-r\sin(\theta)]^2 + [r\cos(\theta)]^2 + c^2)^{1/2}}$$

=
$$\frac{(-r\sin(\theta), r\cos(\theta), c)}{(r^2[\sin^2(\theta) + \cos^2(\theta)] + c^2)^{1/2}}$$

=
$$\frac{(-r\sin(\theta), r\cos(\theta), c)}{(r^2 + c^2)^{1/2}}$$

Olivier St-Martin Cormier

Helix	Co-Helicity	Algorithm	Conclusion
0000			

Derivation of the Unit Normal of an Helix

$$N(t) = \frac{T'(t)}{\|T'(t)\|}$$

$$= \frac{(-r\cos(\theta), -r\sin(\theta), 0)}{([-r\cos(\theta)]^2 + [-r\sin(\theta)]^2 + 0^2)^{1/2}}$$

$$= \frac{(-r\cos(\theta), -r\sin(\theta), 0)}{(r^2[\sin^2(\theta) + \cos^2(\theta)])^{1/2}}$$

$$= \frac{(-r\cos(\theta), r\sin(\theta), 0)}{(r^2)^{1/2}}$$

$$= \left(-\cos(\theta), -\sin(\theta), 0\right)$$

Olivier St-Martin Cormier

Helix	Co-Helicity	Algorithm	Conclusion
0000			

Summary of Helix Equations

Equation

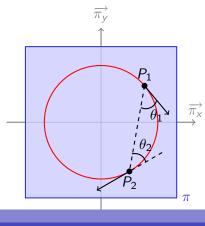
$$H(t) = \left(r\cos(\theta), r\sin(\theta), c\theta\right)$$

• Unit Tangent

$$T(t) = rac{1}{\sqrt{r^2 + c^2}} \cdot \left(-r\sin(\theta), r\cos(\theta), c
ight)$$

Unit Normal

$$N(t) = \left(-\cos(heta), -\sin(heta), 0
ight)$$

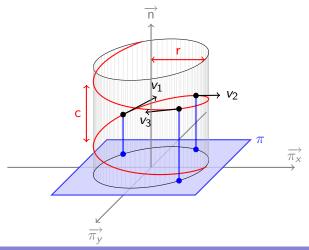

Olivier St-Martin Cormier

McGill University

Helix	Co-Helicity	Algorithm	Conclusion
	00		

Review of Co-Circularity ^[1]

Two points on a circle are co-circular if the magnitude of the angle between their respective tangent and the line passing through the two points are equal. That is, we need $|\theta_1| = |\theta_2|$



Olivier St-Martin Cormier

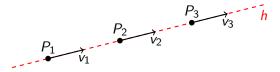
Helix	Co-Helicity	Algorithm	Conclusion
	00		

Co-Helicity

Extension of co-circularity in the third dimension

Olivier St-Martin Cormier

McGill University


Helix 0000	Co-Helicity 00	Algorithm ●○○○	Conclusion

Algorithm to Determine Co-Helicity ^[2]

Step 1 - Check for collinearity

Two conditions need to be checked:

- P_1, P_2 , and P_3 on the same line
- v_1, v_2 , and v_3 tangent to the line formed by P_1, P_2 , and P_3

Olivier St-Martin Cormier

Helix 0000	Co-Helicity	Algorithm ○●○○	Conclusion

Algorithm to Determine Co-Helicity ^[2]

Step 2 - Find the main axis of the possible helix

$$\overrightarrow{n} = (v_3 - v_2) \times (v_2 - v_1)$$

Step 3 - Find the projections of the points and the tangent estimates on the plane $\pi \perp \overrightarrow{n}$

$$proj_{\pi}(v) = v - rac{\langle v, \overrightarrow{n}
angle}{|\overrightarrow{n}|^2} \cdot \overrightarrow{n}$$

Olivier St-Martin Cormier

McGill University

Helix 0000	Co-Helicity	Algorithm ○○●○	Conclusion

Algorithm to Determine Co-Helicity ^[2]

Step 4 - Check for pairwise co-circularity of the projected points and tangent estimates

Step 5 - Find the radius of the circumcircle of the projected points forming a triangle with sides a, b, and c

Heron's Formula:
$$A_{ riangle}=rac{\sqrt{(a^2+b^2+c^2)^2-2(a^4+b^4+c^4)}}{4}$$

$$R = \frac{a \cdot b \cdot c}{4 \cdot A_{\triangle}}$$

Olivier St-Martin Cormier

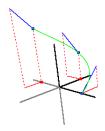
Helix 0000	Co-Helicity ○○	Algorithm ○○○●	Conclusion

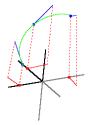
Algorithm to Determine Co-Helicity^[2]

Step 6 - Assume $\theta_1 = 0$ and find θ_2

$$\theta_2 = \arccos\left(\langle \frac{\text{proj}_{\pi}(v_1)}{\|\text{proj}_{\pi}(v_1)\|}, \frac{\text{proj}_{\pi}(v_2)}{\|\text{proj}_{\pi}(v_2)\|}\rangle\right)$$

Step 7 - Find c from


$$\langle v_1, v_2 \rangle = rac{r^2 \cos(t_2 - t_1) + c^2}{r^2 + c^2}$$


Step 8 - Check that v_n are tangent to the helix

Helix	Co-Helicity	Algorithm	Conclusion
0000	00	0000	●○○

What's Done?

Finding co-helicity support and drawing helices

Olivier St-Martin Cormier

McGill University

Helix 0000	Co-Helicity ○○	Algorithm	Conclusion ○●○

References

- 1 Pierre Parent and Steven and W. Zucker, *Trace inference, curvature consistency, and curve detection*. IEEE Transactions on Pattern Analysis and Machine Intelligence 1989
- 2 Peter Savadjiev and Jennifer S. W. Campbell and G. Bruce Pike and Kaleem Siddiqi, *3D Curve Inference for Diffusion MRI Regularization*. 2005
- 3 Peter Savadjiev and Steven W. Zucker and Kaleem Siddiqi, On the Differential Geometry of 3D Flow Patterns: Generalized Helicoids and Diffusion MRI Analysis. International Conference on Computer Vision (ICCV) 2007

Helix	Co-Helicity	Algorithm	Conclusion
0000	oo	0000	○○●

Questions?

Olivier St-Martin Cormier