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ABSTRACT

The purpose of this thesis is to determine the applicability of computer

vision tracking as a source of feed-back in the development of an intelligent

computer numerical (CNC) controller potentially capable of detecting prob-

lems and eventually correcting them. For this task, three types of visual track-

ing methods are quantitatively evaluated to determine which approach is more

suited to the development of the visual tracker. Emphasis will also be placed

on camera calibration.

The three classes of visual methods chosen are a marker-based detector,

a template matching algorithm, and a model-based tracker. From these, it

is found that the marker-based detector is the most accurate for the CNC

tracking task by providing sub-pixel accuracy and robustness to visual con-

taminants such as noise.

A visual simulator is developed to provide a fully controllable testing envi-

ronment to determine optimal system parameters. The simulator also provides

precise ground-truth used to quantify the tracking error and obtain an accu-

racy baseline before applying the tracker on real data. The tracking algorithm

is then applied to image sequences of a physical machine to evaluate the real

performance of the system. The accuracy of the system is found to be limited

mostly by image resolution.
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RÉSUMÉ

Le but du présent mémoire est de déterminer si la vision par ordinateur

peut être utilisée comme source d’information, afin de réaliser un contrôleur

intelligent pour une machine contrôlée numériquement. Un tel contrôleur pour-

rait être capable de détecter les problèmes et ultérieurement être capable de les

corriger. Pour cette tâche, trois types de traqueurs visuels sont évalués quan-

titativement afin de déterminer quelle approche est la plus adéquate. L’accent

sera également mis sur la calibration de la caméra.

Les trois classes de méthodes visuelles choisies sont: un détecteur de mar-

queurs, un algorithme de correspondance de gabarit et un traqueur de modèle.

À partir de ces méthodes, il est constaté que le détecteur basé sur les mar-

queurs est le plus précis pour la tâche qui est de suivre une machine opérée

par commande numérique, car il fournit une précision sous-pixel et est robuste

aux contaminants visuels tel que le bruit.

Un simulateur visuel est conçu pour fournir un environnement de test

entièrement contrôlable afin de déterminer les paramètres optimaux du système.

Le simulateur fournit aussi des données précises utilisées pour quantifier l’er-

reur du traqueur et obtenir un niveau de référence de précision avant d’appli-

quer le traqueur sur des données réelles. Le traqueur est ensuite appliqué à des

séquences d’images d’une machine physique pour évaluer la performance réelle

du système. La précision du système se trouve être limitée principalement par

la résolution d’image.
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1 Introduction

1.1 Motivation

The motivation behind the current thesis can be separated in two distinct

parts. The first concerns how low-precision CNC machining can be improved

through visual feedback using off-the-shelf sensors, and the second concerns

how to choose visual tracking methods for a specific case application.

Fully automated manufacturing machines have been an important topic of

science fiction for many years. A good example of this is the Star Trek repli-

cators capable of manufacturing many different types of objects ranging from

ship parts to prepared meals. The current state of automated manufacturing

is not even close to the futuristic visions of science fiction writers, but the

potential applications of fabrication machines are almost limitless.

Over the past few years, many consumer-grade CNC machines and 3D

printers have become available. These machines are obviously not on par

with their more expensive commercial and industrial counterparts in terms of

quality and precision. This presents new problems such as finding ways to

keep the price of machines low while obtaining the best accuracy possible.

The current thesis addresses this problem by investigating the possibility

of using computer vision as a source of feedback for low-end CNC machines.

1.2 Background

Fairly recent papers by Xu and Newman [1],[2] provide a good overview of the

modern state of automated manufacturing processes. According to them, most

problems with the currently widely-used CNC programming language known

as G-code arise from the lack of high-level information and the machine-specific

properties of the language. An on-going effort to solve most of the problems of

G-code is the development of a new format known as STEP-NC. This format

allows “smart” CNC controllers to use high-level information to control the

machines. For this reason, STEP-NC does not define how controllers should be

implemented, but only gives a description of the final expected result. Figure

1 depicts the block diagram of a “smart” controller that would use visual

information as a source of feedback.

Obviously, this controller relies heavily on feedback from the vision system,

whose main task is to track the current physical state of the machine. Recent
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Figure 1: Block diagram of a smart CNC machine controller

work on CNC machine tracking has been done ([3]) with the goal of implement-

ing an augmented reality system capable of displaying real-time information

about the machine to a human operator. This research showed promise but

did not aim to find the best tracking method for the tracking task.

1.3 Goals

The purpose of this thesis is to assess the viability of computer vision in the

field of automated machining. This will be done by exploring various three-

dimensional object tracking approaches to determine which is more suited to

the development of an “intelligent” CNC controller. Emphasis will be placed

on the tracking accuracy, the ability to run in real-time, and how well the

methods cope with noise and rapid motion.

1.4 System Requirements

• Real-time

For any practical application, the tracking system needs to run at the

same time as the machine and thus the selected methods need to be ef-

ficient enough to process data in real-time.

• Precision

2



As with any machining tasks, the required precision is dependent on the

type of part being machined. For example, surface-mount printed circuit

board routing requires more precision than through-hole printed circuit

board routing.

1.5 Assumptions

• Full Environment Control

For the purpose of this thesis, it will be assumed that the environment

in which the machine resides can be fully controlled. Some of the critical

aspects that may be controlled include the ability to augment the ma-

chine with markers, control the position of the light sources and cameras

in the scene. This means that the tracking method does not necessar-

ily need to be robust to different scene configurations such as changing

shadows.

• Machine Configuration

The current thesis will concentrate on machines with a three-axis con-

figuration, commonly referred to as 2.5-dimension machines. While the

method selected needs only be able to track such machines, thought will

be given to tracking machines with a greater number of degrees of free-

dom.

• Rigid Objects

It will be assumed that all of the tracked objects are rigid, there will be

no visible object deformation.

• Approximate knowledge of the object position

As the goal of this project is to track a CNC machine while it is running,

the controller of the machine may be able to provide an approximation

of the tool position. This may be useful when initializing some tracking

algorithms.

1.6 Potential Problems

As mentioned in [3], practical applications will often include visual “contami-

nants” like dust and coolant which may occlude or change the appearance of

some features of the scene.

3



1.7 Potential Applications

At the most basic level, a system capable of accurately tracking a CNCmachine

can be used for simple tasks such as initializing a machine to a given home

position after a system reset or between two programs. Faster initialization

and re-initialization can greatly reduce production downtime and minimize

the need for human operator intervention. An efficient tracking system is also

an integral part of the development of an “intelligent” controller capable of

detecting and correcting errors.

1.8 General Goals

By the end of this thesis, the following questions will be answered.

• Which type of method provides the most accurate tracking results?

• Which type of method is the most computationally efficient?

• How does camera resolution influence tracking accuracy?

• What accuracy should be expected from such a system?

1.9 Thesis Overview

The thesis will start with a short literature review in Section 2. Section 3

will then give an overview of the testing platform that will be used through-

out the thesis, while Section 4 will present the camera calibration algorithm

implemented. The next sections will then be used to demonstrate the imple-

mentation of the three candidate trackers, in the following order: Section 5 will

introduce a marker-based 2D tracker, Section 6 will present a tracker based

on 2D template matching, and Section 8 will show a model-based 3D tracker.

Each of these sections will characterize the different trackers by applying con-

trolled tests to determine how they react to noise and motion.

In Section 9, the tracker that has been found to be more suited to the task of

tracking a CNC machine will be tested on a simulated machine. The simulator

will first be used as a sensor planning tool to determine the optimal position

of the camera. The simulator will then be used to predict the maximum

theoretical accuracy of the overall system. Finally, an estimate of the expected

practical accuracy of the tracker will be determined.
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The last section of the thesis will apply the tracking system to an image

sequence from a real machine to determine the applicability of the system to

real world implementation.

5



2 Literature Review

The basic goal being the tracking of a structure moving through three dimen-

sional space, most of the related literature will come from the general field of

object tracking. As there is a wealth of literature discussing this topic, it is

important to find information pertinent to the current topic by referring to the

requirements and assumptions detailed earlier and by finding papers dealing

with similar problems. The two closest areas of research are visual servoing

and augmented reality.

Visual servoing aims to create a feedback loop based on visual information

to control robot actuators. This is very similar to the idea of the smart CNC

machine controller discussed earlier. Visual servoing methods are separated

into two main parts: visual tracking, and motion control. In the context of

the current thesis, only the tracking aspect will be investigated.

Augmented reality systems usually involve tracking the state of the camera

relative to the real world in order to overlay information over camera images.

Tracking the position of the camera is the same operation as tracking an ob-

ject’s position with respect to the camera.

Short literature reviews dealing with each of the trackers implemented in

the context of this thesis will be presented at the begining of each of their

respective sections.

For both visual servoing and augmented reality tracking systems, the track-

ing can usually be categorized in one of two categories [4], position-based, or

image-based. The first type of method involves extracting the pose of the

tracked object by using a three dimensional geometric model of the object,

while the latter only uses features from the two dimensional camera image.

The next two subsections will summarize a few existing methods from both

types of approach.

2.1 Position-Based Tracking

Position-based tracking involves the use of three-dimensional models. Existing

methods in this field present various degrees of complexity depending on the

type of object to be tracked.

One approach is to track polyhedral objects that have a known model. This

model can be obtained directly from the Computer Aided Design (CAD) file

of the part being tracked. Such an application is found in [5].

6



Models composed of different parts can also be tracked by using a method

such as what is presented in [6]. This is closer to the problem being investigated

by this thesis as a CNC machine can be defined as a collection of four models

that have known relations. The underlying tracking method is very similar to

[5] and [7]. This type of tracker will be explored in more details in Section 8

by implementing the algorithm presented in [7].

More complex model-based trackers can use deformable models to track

non-rigid objects such as human body parts. This sub-area of research is not

considered in the current thesis as no deformable objects are to be tracked.

2.2 Image-Based Tracking

The papers mentioned here are chosen to show both the types of image features

that can be used and the variety of situations in which image-based visual

servoing can be applied.

A paper by a fellow center for intelligent machine researcher [8] details a

servoing method applied to an aquatic robot following a colored ball detected

using a region of interest detector. No formal study of the tracker’s accuracy is

provided in this particular paper, but examples provided show that the region

of interest only provides a rough estimate of the center of the ball.

A similar application of servoing is detailed in [9], where a sum of square

difference (SSD) template matching is used to locate a known marker in a

camera image. The position of this marker is then used to compute the position

of the robot.

Another interesting application of visual servoing is the control of a welding

robot based on the tracking of straight lines [10]. As stated in the paper, lines

are robust image features that can be extracted in many different ways.

As can be seen from these few papers, any image feature which can be

reliably extracted is a good candidate for an image-based tracking system.

7



3 Testing Platform

This section will describe the tools used to evaluate the different methods.

3.1 Hardware Platform

The specific characteristics of the system are not important other than to

provide a general idea of the context in which measurements were made. The

test system is a six-core AMD Phenom II processor clocked at 3.30 Ghz. The

other noteworthy part in the test system is an NVidia GTX 560 video card,

which supports CUDA parallel computing. Execution times shown in this

thesis are used as a metric to compare different algorithms; they are not meant

as an absolute measure of an algorithm’s performance, as execution time would

be different on other sytems.

3.2 Software Platform

All algorithms implemented for this thesis are written in C/C++. Many com-

puter vision libraries such as the widely used OpenCV exist, but it was decided

that these would not be used. The reason for this is more than purely edu-

cational, full transparency of the underlying structure is required to properly

compare the different algorithms. The goal of this thesis is not only to evaluate

tracking algorithms, but also to learn about the inner workings of computer

vision. Using high level libraries and tools such as Octave or MATLAB is con-

venient, but it shields the developers from the implementation details, which

are often important to understanding the intricacies of the algorithm being im-

plemented. Writing the low level functions also allows for better optimization

based on the specific situations being encountered. This gives a greater under-

standing of the characteristics and limitations associated with each component

of the system.

Even if no computer vision library is used, there are obviously many soft-

ware libraries used to implement large scale algorithms. Video Capture is

done through the Video for Linux version 2 (V4L2) application programming

interface (API). The portable network graphics library (libpng) is used to read

and write image files. Most of the more complex linear algebra problems are

handled through the Armadillo library, chosen because of its reliance on the

linear algebra package (LAPACK), which in turn relies on the Basic Linear

8



Algebra Subprograms (BLAS) to achieve very high performance. Finally, the

Simple DirectMedia Layer (SDL) and the OpenGL libraries are used to display

images, render three dimensional scenes and handle user inputs.

3.3 Machine Simulator

To be able to compare the different methods in a fair manner, they need to

be tested on the same datasets. As the methods studied may require differ-

ent scene configurations, it would not be technically feasible to capture videos

from a physical machine for the testing stage. For this reason, a machine “sim-

ulator” program was devised. This program uses OpenGL to render a virtual

machine. Figure 2 shows a stereo pair of images of the machine rendered by

the “simulator”. None of the tracking methods implemented for this thesis

rely on stereo imagery, but it is interesting to note that the simulator is flex-

ible. Strictly speaking, this program is a visual simulator and not a physical

simulator, as no physics simulation is performed.

(a) Left Image (b) Right Image

Figure 2: Stereo pair of images generated by the simulator

The second reason for using a simulator is that to properly evaluate the

tracking methods, a set of ground truth measurements is required. This ground

truth is very hard to obtain accurately in real life and would probably require

human annotation of an image sequence. The simulator is capable of out-

putting very precise data regarding the state of the machine for each frame of

the sequence.

9



3.4 Real Machine

For the final testing stage, a real CNC machine will be used to measure the

performance of the algorithm. The physical setup used will be described in

more detail in Section 10.

10



4 Camera Calibration

Camera calibration is an important step in most object tracking methods as

the accuracy of the tracking is largely dependent on the precision of the camera

calibration. Most of the information for this section of the thesis comes from

[11], which presents a camera calibration method requiring a single pattern

placed on a planar surface. This section will detail the calibration method

and its implementation. More recent calibration methods such as [3] were

considered, but the approach of [11] was determined to be adequate for the

present thesis.

The first calibration pattern chosen was very similar to the one used in the

original paper. A scaled version of the pattern is shown in Figure 4.

Figure 3: Planar pattern used for the camera calibration (1:2 scale)

The calibration procedure starts by prompting the user to input a polyg-

onal crop region to restrict the search area of the detector. This first step is

not strictly necessary, but provides a considerable improvement in calibration

speed. To simplify the corner detection further, the image region is binarized.

The threshold value is determined using Otsu’s method [12]. This method

assumes that the image is composed of two types of pixels, foreground and

background. This is exactly the situation we are presented with as the cali-

bration pattern is made of black squares over a white background. Once the

corners are extracted, the program applies the calibration algorithm presented

in [11]. The optimization stage relies on a Levenberg-Marquardt least-squares

minimization algorithm. Figure 4 shows the three step calibration procedure

for both a real camera and a simulated OpenGL camera.

The use of this pattern causes two problems. First, the fact that the

pattern is symmetrical makes it impossible to acquire information about its

orientation, and thus, the extrinsic parameters of the camera are difficult to

compute. The second problem is caused by the use of a FAST corner detector

[13],[14]. This detector, as its name implies, is fast but not accurate enough

11



(a) (b) (c)

Figure 4: The three steps required to calibrate a camera. An image generated
by the simulator and an image captured by a webcam are shown in (a). The
user-defined crop region is shown in (b). In (c), the calibration results are used
to draw the three axes of an X-Y-Z coordinate system in red, green, and blue,
respectively.

for a good camera calibration. Figure 5 shows the problems related to the

use of this detector. As can be seen in 5(b), the corners are detected inside

of the dark region. Some pruning can be applied to the output of the FAST

detector to get a result similar to what is shown in 5(c). It can be seen that

the detected corner is still located half a pixel from the real corner, shown in

5(d).

Because of these problems, the calibration pattern was changed to what

is shown in Figure 6. With this new pattern, the circle detector that will

be presented in Section 5 can be applied to find the center of the circles to

sub-pixel accuracy. Because of the missing circle in the top right corner of

the pattern, the origin of the coordinate system can always be positioned on

the circle in the opposite corner. User intervention is also not required as the

detector can process the entire image with little to no misclassification.

By estimating the camera parameters over a few frames, it was noticed

that the non-linear optimization stage returns slightly different results for each

frame. This is probably due to measurement noise. Figure 7 shows the esti-

mated focal length in red over one thousand frames. The estimated value

fluctuates between 10.5 and 12.5. Only the estimated focal length is shown,
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(a) (b) (c) (d)

Figure 5: Illustration of the problem related to the use of FAST corner de-
tectors. In (a), a corner is shown. The predicted output of a FAST detector
is shown in (b). The results of (b) can be pruned to get a better idea of
the location of the corner (c). Finally, (c) shows where the corner should be
detected.

Figure 6: Second calibration pattern used. (1:4 scale)

but similar fluctuations are found with the other camera parameters as well.

For this reason, the output of the estimation was fed into a Kalman filter

to try to reduce the amount of noise. For the implementation details of the

Kalman filter used, please refer to Section 12.1. The filters were initialized

with Qi,i = 0.0001 and Ri,i = 0.5, meaning a very small amount of process

noise and a large amount of measurement noise. The output of the Kalman

filter for the focal length is superimposed over the estimation values in Figure

7 (in blue). By looking at the plot, it is clear that the filtered values seem to

be closer to a constant value than the measurements. The final value of the

focal length is taken to be the average of the filtered values.
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Figure 7: Plot of the measured focal length of a camera over a period of 1000
frames (red) and the output of a Kalman filter (blue).

5 Marker-Based Detector

5.1 Background

Marker-based algorithms require one or more visual markers to be added to

the tracked object. Marker detection has been extensively used by augmented

reality, medical vision systems and by point of sale systems to identify prod-

ucts in a way similar to bar-codes. The marker designs vary between the

various methods that have been proposed over time. Some of these methods

use quadrilateral markers [15],[16] providing strong edges that can easily be

extracted from images using standard image processing methods. Some use

single circular markers composed of concentric rings [17],[18]. Other methods,

like the one that will be detailed in this section, use a set of easily detectable

points with a known geometric relation.

According to Lepetit and Fua [19], circular markers can be detected to an

accuracy of 1/10 pixel in most cases and an accuracy of 1/100 pixel is possible

when controlling scene conditions. The fiducial detection method that was

implemented for this thesis comes from [20] because it uses circular markers

and is reported to be very robust.

5.2 Overview

The fiducial marker detection algorithm proposed in [20] can be summarized

by the block diagram shown in Figure 8. The input image is the image where

fiducial markers are to be found. The list of markers is a possibly empty list

containing information about the detected markers. Each of the other blocks

will be described in the following subsections.
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Input Image
Ideal Bayes

Classifier

Decision Surface

Nearest-Neighbor

Classifier

Examples

Sub-Pixel

Localization

Quadrilateral

Region Detector
List of Markers

Circular Marker Detector (Cascading Classifiers)

Fiducial Detector

Figure 8: Block diagram of the methodology behind the fiducial marker de-
tector

5.3 The Markers

The markers used are fairly simple in design, they are created by placing four

circles on the vertices of a square. For the purpose of this thesis, the side of the

square was set to 10 centimetres and the radius of the circles was chosen to be

8 millimetres. These choices yield markers that look similar to those presented

in the original paper [20]. To be able to distinguish between multiple markers,

a three by three matrix capable of storing identification information is added

within the space enclosed by the four circles. This method of adding data to

the marker is presented in [21]. Figure 9 shows the position of the four circles

and the position of the identification data.

Figure 9: Fiducial marker with pink region representing the area available to
store information (1:3 scale)

Even if the matrix used to store information is three by three, it is not

possible to use all 512 possible combinations with this marker. This is due to
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the fact that there is no way to compute the orientation of a marker. Thus,

it is impossible to distinguish between two markers if it is possible to generate

the second by rotating the first. This situation can be seen in Figure 10 (a and

b). There are many ways to deal with this problem, the simplest one being to

restrict the set of markers to those that are not affected by the problem. A

more elegant way to handle the orientation problem is to add a fifth circle on

one of the sides of the square to denote the top of the data matrix, as shown

in Figure 10 (c). While this allows the use of all 512 combinations, there are

still potential problems. If the reflection of a marker on a mirror is observed,

two different markers would be confused. This last problem can be solved by

moving the orientation circle to a side of the marker, as seen in Figure 10 (d).

(a) (b) (c) (d)

Figure 10: Two markers that are indistinguishable (a and b) and markers
augmented with orientation circles (c and d) (1:3 scale)

For the purpose of tracking a CNC machine, a minimum of one marker is

required, and it might be interesting to place a different marker on each of

the different parts of the machine to track them separately. For this reason,

simply choosing markers that cannot be confused is appropriate and thus, no

orientation circle will be necessary for the current project. Once the black

circles are found in the image, fiducial markers can be detected by a simple

geometric check, as done in [20].

5.4 The Examples

The two classifiers that determine whether an image patch is a marker or not

require a set of positive and negative examples. Obviously, the classification

accuracy is highly dependent on the initial examples and thus, care must be

taken when gathering examples. A few of these examples are shown in Figure

11. All examples used are 12 pixels by 12 pixels.
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Figure 11: A subset of the examples used for the two classifiers. The first two
rows are positive examples and the last two rows are negative

The negative examples are generated by extracting all 12 by 12 sub-windows

of a few images not containing any markers. The positive examples are created

by manually choosing image patches containing valid circular markers from a

set of training images. As can be seen in Figure 11, examples representing

extreme distortion and lighting conditions are included to make the classifiers

more robust to changes in perspective and illumination of the scene. Robust-

ness, in the current context, refers to the ability of the system to successfully

etect the marker when presented with different scene configurations. To in-

crease the robustness further, a larger set of examples is generated from those

manually chosen to simulate more varied conditions. The images are smoothed

by convolving them with a Gaussian kernel of varying standard deviation to

simulate slightly out of focus circles. Different brightness and contrast settings

are also applied to the examples to simulate a wide range of lighting conditions.

Finally, the images are rotated to simulate camera rotation.

The detector proposed in the original paper [20] is not directly robust to

scale variation. The detection of varying circle sizes is achieved by successive

application of the detector on scaled versions of the input image. Scale vari-

ation could also be handled by using a larger window size and presenting the

training algorithm with examples containing black circles of different sizes. Us-

ing a large window size would slow the algorithm down in the nearest neighbor

detection stage that will be detailed in Section 5.6. Thus, both methods of

handling scale variation reduce the performance of the system. For the tests in

this section, the diameter of the circles will be restricted to approximately 10

pixels to eliminate the scale variation problem. For the final implementation

described in Sections 9 and 10, a larger sub-window size will be used and the

detector will be trained with example circles of different sizes.
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5.5 Ideal Bayes Classifier

The goal of the ideal Bayes classifier is to quickly find image patches that

may contain a circular marker. It is used mostly as a means of reducing the

number of sub-windows that will need to be evaluated by the nearest-neighbour

classifier.

This classifier is based on the heuristic that if an image patch contains

a circular marker, the pixels on the outer edge should be lighter than those

in the center. By considering pairs of pixels containing one of the center

points and one of the 8 pixels along the borders, two distributions D− and

D+ can be built from the negative and positive examples, respectively. The

two distributions are shown in Figure 12. It must be noted that the two

distributions have been smoothed by convolving them with a Gaussian kernel

of small standard deviation to remove potential abnormalities and create more

uniform distributions.
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Figure 12: Distribution of pixel pairs (a) from the negative examples and (b)
from the positive examples. The horizontal axis represents the intensity of the
center pixel and the vertical axis represents the intensity of the edge pixel.

classification(Ic, Ie) =

+1 if α ·D+(Ic, Ie) > D−(Ic, Ie)

−1 otherwise
(1)

Given a pair of pixels (Ic, Ie), where Ic is the intensity of the center point

and Ie is the intensity of the edge point, Equation (1) can be used to determine

whether the pair comes from a window containing a circular marker (+1) or

not (−1). The α parameter represents the “relative cost of a false negative
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over a false positive”[20].

By varying the value of α, it is possible to generate a receiver operating

characteristic (ROC) curve as shown in Figure 13.
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Figure 13: ROC curve generated by varying α.

As stated previously, the goal of the Bayes classifier is to determine which

image patches should be considered by the next classifier. For this reason,

false negatives may cause severe problems in later stages, but false positive

should not be a concern. This means that α needs to be chosen where the

sensitivity is very high. It is obvious that a high specificity is preferable, but

not necessarily required at this point. By using the ROC curve, it was found

that α = 0.274373, associated with a sensitivity of 0.967120 and a specificity

of 0.980106, generates a good decision surface, shown in Figure 14. Again, the

decision surface is smoothed and thresholded to make the boundary smoother.
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Figure 14: Resulting Decision Surface.
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classification(Ic, Ie) =


+1 if (Ic, Ie) lies on a white region of

the decision surface

−1 otherwise

(2)

The beauty of this method is that once the decision surface is obtained, it

can be saved and reloaded whenever necessary. The decision surface can then

be used to quickly classify new pixel pairs (Ic, Ie) using the classification rule

in Equation (2). The decision surface is effectively used as a look-up table.

5.6 Nearest-Neighbour Classifier

This classifier is conceptually quite simple and robust, but is not computation-

ally efficient. That is why it is only applied to regions detected by the Bayes

classifier.

In order to find a nearest neighbour, a distance metric must be defined. If

the 12 × 12 image region being evaluated and the examples are reshaped to

a 144-dimensional vector, then the distance between an image patch and an

example is induced by the Euclidean vector norm || · ||.

classification(x) = −sign(min
i
||pi − x||2 −min

j
||nj − x||2) (3)

Given an image patch, applying the classifier involves finding the closest

example from each of the positive and negative example set. From that, the

binary classification of a 12 × 12 image region (x) can be found by using

Equation (3), reproduced from [20], where p and n are the positive and negative

example sets, respectively.

5.6.1 Reducing the Number of Examples

The execution time of the nearest neighbour classifier is directly proportional

to the number and dimension of examples that have to be compared with the

image patch being classified. Thus, the best way to decrease the execution

time required to run the classifier is to either decreasing the number of exam-

ples or reduce the dimentionality of the examples. Dimensionality reduction

refers to either using smaller subwindows, thus making the vectors represent-

ing the subwindows smaller or using methods to encode the information of the
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subwindows in smaller vectors. Methods such as principal component analysis

could be used for dimensionality reduction. To implement the same method

as presented in [20], the number of examples will be reduced. To determine

which of the examples to remove and which to keep, the condensed nearest

neighbour rule presented in [22] is used.

The logic behind the condensed nearest neighbour rule is to find a subset

of the examples that can properly classify the remaining examples using the

nearest neighbour classification discussed previously. This subset is called a

consistent subset of the example set.

The condensed nearest neighbour algorithm uses two bins to separate the

redundant examples from the ones part of the consistent subset. The first bin is

called the store and will contain the consistent subset once the condensation is

complete. The second is called the grab-bag and contains the other examples.

The algorithm begins by placing all examples in the grab-bag. Then, the first

positive and negative examples are transferred to the store. At each iteration

of the algorithm, the examples of the store are used to classify the examples in

the grab-bag. If an example from the grab-bag cannot be properly classified

as positive or negative, it is added to the store. The algorithm continues until

all the examples in the grab-bag can be classified correctly by the examples in

the store. At this point, the examples in the grab-bag can be discarded.

As stated in [20], manually choosing a positive and negative initial example

yields smaller final subsets. The number of negative training examples was

reduced from 34916 to 60, and the number of positive examples reduced from

990 to 54. This smaller number of examples makes it possible to run the

nearest neighbour in a shorter amount of time.

5.7 Sub-Pixel Sampling

likelihood(x) =
minj ||nj − x||2

mini ||pi − x||2
(4)

In order to find the coordinates of the circular markers to sub-pixel preci-

sion, the nearest neighbour classifier is modified to return the likelihood of a

marker being inside the considered window instead of a binary classification.

This likelihood is computed by using Equation (4).

The results from the nearest neighbour classifier are labelled using a sequen-

tial labelling algorithm [23] to find connected regions representing individual

circles. This labelling can be used to segment the image into “windows”, where
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sub-pixel sampling strategies can be applied. The original marker detection

method makes use of a non-maxima suppression to determine the center of

the circles, but other methods presented in [24] will now be implemented in

Sections 5.7.1 through 5.7.7 in order to determine which is more accurate.

5.7.1 Maximum Intensity Pixel (MIP)

This is the simplest method; it involves finding the pixel with the highest

likelihood and selecting it as the center of the circle. In most cases, MIP does

not find the center of the circle to sub-pixel accuracy. The only situation in

which such precision can be obtained is when more than one pixel have the

same likelihood and that this likelihood is the maximum. In that case, MIP

returns the average of the positions of the maximum points.

5.7.2 Non Maxima Supression (NMS)

The non maxima suppression strategy is similar to MIP, but returns more than

one point if multiple local maxima exist in the image. In the same way as MIP,

NMS does not usually offer sub-pixel accuracy.

5.7.3 Intensity Barycentric Weighting (IBW)

Cx =

∑n
i=0mi xi∑n
i=0 mi

, Cy =

∑n
i=0mi yi∑n
i=0mi

(5)

This algorithm is based on the physical concept of center of mass. Given

an object defined by a set of n particles, the physical center of mass of this

object is determined with Equation (5), where C is the center of mass, mi is

the mass of the ith particle, and pi = (xi, yi) is the position of the ith particle.

The same equation can be used by considering the circle as an object

composed of n pixels and replacing the mass by the likelihood of each pixel.

5.7.4 Intensity Linear Interpolation (ILI)

This algorithm starts by finding the location of the MIP of the image. Once

found, the row containing the MIP is extracted. This row can be viewed as a set

of measurements taken from a 2D curve. Figure 15 shows an example of such

a row with black square markers. As stated in the name, linear interpolation

(green lines) is used to connect the points. The method continues by finding

the intersections (black lines) between the interpolated curve and an imaginary
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Figure 15: Reproduction of a figure from [24] to demonstrate how the ILI
method is applied.

horizontal line (blue line) at half the intensity of the MIP. The midpoint of

the line connecting those intersections is used as the sub-pixel location of the

center in the x direction. This process is applied again for the y direction by

extracting the column containing the MIP.

5.7.5 Intensity Quadratic Fitting (IQF)

f(x) = a4x
4 + a2x

2 + a0 , f ′(x) = 4a4x
3 + 2a2x (6)

The IQF strategy begins by extracting the row or the column containing the

MIP in the same way as for the previous method. To determine the location of

the center, a quartic function of the form shown in (6) is fitted to the extracted

points using a non-linear least squares technique.

Once the Gaussian curve is found, it is possible to determine the location

of the center of the circular marker by finding the maximum of the quartic

function. This is done by finding the positive zero-crossing of the derivative

of the curve. As with the previous method, the technique needs to be applied

independently for the x and y directions.

5.7.6 1D Intensity Gaussian Fitting (1DIGF)

This is the same technique as IQF, but instead of fitting a bi-quadratic curve,

a Gaussian curve is fit to the data. The center is then simply taken as the

mean of the Gaussian curve.
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5.7.7 2D Intensity Gaussian Fitting (2DIGF)

This final method is an implicit function fitting problem using a 2D Gaus-

sian surface. A Levenberg-Marquardt least-squares surface fitting algorithm is

used. Again, the means in the x and y directions of the Gaussian surface are

taken as the center of the circular marker.

5.7.8 Comparison of the Methods

In order to compare the accuracy of the seven methods, a set of matrices

containing truncated 2D Gaussian distributions was used. This was used to

simulate the distribution of the likelihoods obtained from the nearest neighbour

classifier. The standard deviations in the x and y directions of the distributions

were varied to simulate a circle being observed from different perspectives.

The center of the circles was moved by changing the means of the Gaussian

distribution.

Table 1 contains various statistics about the error between the real center

and the center reported by each of the methods. A large number (14400) of

sample matrices were used to generate the table. By looking at the table, IQF

can easily be discarded because its mean error is simply unacceptable. This

is probably due to the fact that a bi-quadratic curve does not represent the

data well. MIP and NMS can also be discarded as their standard deviations

are both high.

Algorithm Min Max Std.Dev. Mean RMS Runtime(ms)

MIP 0.00 0.67 0.14 0.35 0.38 0.02
NMS 0.00 0.67 0.14 0.35 0.38 0.26
IBW 0.00 0.47 0.09 0.15 0.18 0.02
ILI 0.00 0.01 0.00 0.00 0.00 0.01
IQF 2.75 3.73 0.20 3.37 3.38 0.11

1DIGF 0.00 0.04 0.01 0.01 0.01 0.35
2DIGF 0.00 0.00 0.00 0.00 0.00 9.95

Table 1: Comparison of the error produced by the various sub-pixel localization
methods applied to noise-free images.

The results in Table 1 show how the methods fare when presented with

noise-free images. Table 2 was generated from 43200 sample images containing

various amount of additive noise. Compared to the previous table, the errors

are noticeably larger. From this table it can be seen that 2DIGF does not
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cope well with noisy measurements. ILI also seems to have some problems

with noise.

Algorithm Min Max Std.Dev. Mean RMS Runtime(ms)

MIP 0.00 5.12 0.78 1.07 1.33 0.02
NMS 0.00 3.62 0.61 0.90 1.09 0.37
IBW 0.00 5.43 0.50 0.52 0.72 0.02
ILI 0.00 12.68 4.07 4.81 6.30 0.01
IQF 0.05 158.81 2.88 3.57 4.59 0.08

1DIGF 0.00 49.74 1.08 0.79 1.34 0.44
2DIGF 0.00 1012.80 20.26 9.04 22.18 24.52

Table 2: Comparison of the error produced by the various sub-pixel localization
methods applied to noisy images.

Three potential methods are now left: IBW, ILI, and 1DIGF. To determine

the best one to use, they were run with a varying amount of noise. The results

of this test are shown in Figure 16. From this test, it can be seen that ILI is

very sensitive to noise. IBW and IGF both seem to be influenced by noise in

the same way, however, 1DIGF seems to be a little less stable as seen from the

spikes. For this reason and because IBW runs roughly 19 times faster than

1DIGF, IBW is chosen as the sub-pixel sampling method.
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Figure 16: Plots showing the effect of noise on the average error for three of
the methods.

5.8 System Evaluation

Once the sub-pixel sampling method is chosen, the entire tracking system

can be executed. As shown in Figure 8, the ideal Bayes classifier identifies
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potential circles in the input image. The nearest-neighbor classifier is then

used to determine the likelihood of an actual circle being located at each of

the potential regions. Intensity barycentric weighting can then be applied

to the likelihoods of each region to accurately find the centers of the circles.

Finally, a simple geometric quadrilateral region detector extracts the position

of fiducials in the image.

In this section, different aspects of the overall tracker will be individually

tested. All tests are performed on artificial sequences, where an image con-

taining the marker is placed on a white background. While generating this

artificial sequence, it is possible to change different parameters such as noise

and amount of inter-frame motion to observe their influence on the tracking

results.

5.8.1 Sensitivity to Noise

To test the noise sensitivity of the algorithm, a small program was devised.

The influence of noise is measured over a 1000 simulated frame sequence and

the average of the tracking error is reported. The program is then executed for

different amounts and kinds of noise to generate the plots that will be shown in

this section. As will be shown later, the program can also report the detection

rate as the number of frames in which the marker was found over the 1000

frames sequence.

Figure 17 demonstrates that when the image contains additive Gaussian

noise, the tracking error increases when the intensity of the noise increases.

As the plot demonstrates, the error increases rapidly when noise is added, but

settles to a linear growth at a noise intensity of approximately 30.
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Figure 17: Plot of the average tracking error when the tracker is presented
with image sequences containing different amplitudes of Gaussian noise.

The same experiment can be done once more with non-Gaussian noise to
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determine how different types of noise influence the tracker. One type of non-

Gaussian noise that is commonly found in digital images is salt and pepper

noise. It can be described as a set of black and white pixels randomly dis-

tributed in the image. Figure 18 shows that when the image contains different

amounts of salt and pepper noise, the tracking error increases rapidly. The

plot shows the tracking error up to a point when forty percent of the pixels in

the image are black or white noise. Measurement of the tracking error with

more noisy pixels is difficult because the detection rate falls dramatically.
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Figure 18: Plot of the average tracking error when the tracker is presented with
image sequences containing salt and pepper noise with varying percentage of
noisy pixels.

The relation between the accuracy of the detector to the amount of noise

shown in Figures 17 and 18 does not give any information about the rate of

detection. When there is a large amount of noise, the detector may fail to

properly locate the circular markers in all frames. Figure 19 provides informa-

tion about the percentage of frames in which the fiducial marker is successfully

detected given different amounts of Gaussian noise. As can be seen, Gaussian

noise has almost no influence of the detection rate.
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Figure 19: Plot of the detection rate when the tracker is presented with image
sequences containing different amplitudes of Gaussian noise.
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For non-Gaussian salt and pepper noise, the plot shown in Figure 20 is

quite different. When there are less than 10% of the pixels affected by noise,

the detection rate remains at almost perfect. When more than 10% of the

pixels are affected, the detection rate steadily decreases to a zero detection

rate at around 40%.
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Figure 20: Plot of the detection rate when the tracker is presented with image
sequences containing salt and pepper noise with varying percentage of noisy
pixels.

5.8.2 Sensitivity to Motion

As mentioned earlier, the algorithm presented in this section is a detector. This

means that no information is carried from one frame to the next and the entire

image is processed at each time step. For this reason, the performance of the

detector should be the same given any amount of inter-frame motion. Figure

21 confirms this reasoning and shows that the error remains fairly constant

even when presented with sequences containing a large amount of motion.

The gaps in the detection could be filled by using the predicted value from a

Kalman filter.

5.9 Strengths and Weaknesses

The two first strengths of the algorithm presented here are the ability to cope

with large motion and the robustness to noise. Both of these strengths come

from the fact that the algorithm is executed on each incoming video frame

independently and that no information is carried from one frame to the other.

If an input frame is corrupted, for example by noise, the marker will simply

not be detected in that frame, without influencing the detection of the next

frames. If required, the gaps in the detection could be filled by the use of an
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Figure 21: Plot of the average tracking error when the tracker is presented
with noise-free image sequences containing different amounts of motion.

appropriate Kalman filter, as presented in Section 12.1. The detector is thus

not prone to drifting, which gives this algorithm a clear advantage over the

tracker that will be presented in the next section. The main weakness of the

detector is that having to locate fiducials in each frame independently has a

high computational cost.
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6 Template Matching

This section details an incremental tracker that should be more computa-

tionally efficient than the detector of Section 5. The current tracker also uses

natural texture information from the object being tracked and thus, no marker

need to be added. The template tracking method implemented is presented in

[25] and [26]. The second paper provides a thorough discussion of the mathe-

matics involved. The major difference between the chosen method and other

template-matching methods is that online computational costs are minimized

by making two assumptions about the tracking task. These assumptions will

be discussed later.

The overall structure of the program is shown in Figure 22.

Target Region
Generate Set Of

Tracking Points

Learn the A Matrix
Measure In-

tensity Change

Update Transfor-

mation Matrix

Training Tracking

Figure 22: Block diagram of the template tracker

6.1 Motion Vector

F Prect = Pimg (7)

Instead of explicitly tracking the position of the target points in the image,

the proposed method tracks the 3× 3 transformation matrix F that projects

the original tracking points from their homogeneous coordinates inside the

tracked rectangle Prect to their position in the image Pimg. This projection is

shown in Equation (7). Jurie and Dhome [26] refer to the projection matrix

as the motion transformation matrix. A section of [25] is dedicated to the

description of two different motion models.
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Fsimilarity =

 s · cos(θ) − sin(θ) tx

sin(θ) s · cos(θ) ty

0 0 1

 (8)

The first one, similarity motion, tracks the translation, rotation, and scale

of the image patch being tracked. The transformation matrix representing

this model is shown in Equation (8), where s is the scale, θ is the angle of

rotation, and the pair (tx, ty) represents the translation along the x and y

axis, respectively. This model is only valid when the camera’s principal axis is

orthogonal to the surface being tracked during the entire tracking sequence.

Fhomography =

 a b c

d e f

g h 1

 (9)

The second model considers a full homography that allows the tracking of

planes moving in three dimensional space under perspective projections. The

transformation matrix for this second model is shown in Equation (9).

F =

 s 0 tx

0 s ty

0 0 1

 (10)

For the context of the current thesis, the motion model can be greatly

simplified by noting that the machine being tracked only moves along the x, y,

and z axes. If the camera’s principal axis is placed parallel to one of the three

coordinate axis (x, y, or z), only translation and scale will be perceived by the

camera. This allows the use of a reduced similarity model with transformation

matrix shown in Equation (10). This matrix is a special case of Equation (8)

when the rotation parameter θ is set to 0.

µ = [s, tx, ty] (11)

While seemingly insignificant, this simplification greatly reduces both the

computational cost and the amount of training examples required for proper

tracking. As only three parameters are required to create the transformation

matrix, it is possible to define a state vector µ which has the following form:
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Figure 23: Selection of the tracking points (red) on regular grid (pale blue)
given a user supplied rectangular region (black)

6.2 Training Stage

The program begins by waiting for a user to input a rectangular tracking

region. A group of tracking points is then generated by placing points on a

regular grid filling the region. The set of points will be referred to as R.

R =

 P0x P1x · · · Pnx

P0y P1y · · · Pny

1 1 · · · 1

 (12)

Figure 23 gives a graphical representation of how tracking points are chosen

given a rectangular region. The set of points can be represented as a matrix,

as shown in Equation (12). This matrix form is used mostly for transformation

purposes.

F0 =

 1 0 x0

0 1 y0

0 0 1

⇐⇒ µ0 = [1, x0, y0] (13)

The point in the top-left corner is taken to be the origin of the tracking

region and its coordinates are referred to as (x0, y0). From that, the initial

transformation matrix and associated motion vector have the form shown in

Equation (13).

δµ = AjδI (14)

From this, an intensity vector I0 representing the template to be tracked

is obtained by sampling the input image at each point F0R. The goal of

the training stage is then to learn the relation between a change of intensity

δI = Icurrent − I0 and the movement that generated it δµ = µcurrent − µ0.

32



This relation is the solution Aj to Equation (14). The current implementa-

tion of this model is valid only when tracking planar surfaces with constant

illumination and reflectance.

To obtain the global relation between motion and intensity change, the

initial tracking region is randomly shifted to simulate motion. Multiple such

shifts are created to ideally cover all possible motions from the initial region.

These shifts are generated by creating a set of randomized transformation

matrices with values taken from a Gaussian distribution centered around the

initial values. The following equation shows the form of a random transforma-

tion matrix:

Frandom =

 sr 0 xr

0 sr yr

0 0 1

⇐⇒ µrandom = [sr, xr, yr] (15)

where

sr ∼ N (1, 0.05)

xr ∼ N (x0, 5)

yr ∼ N (y0, 5)

The choice in standard deviation of the Gaussian distributions will influence

the amount of inter-frame motion that the tracker can properly track. A

small standard deviation will restrict the maximum allowed movement between

two consecutive frames while a large value allows for larger displacement, but

sometimes leads to instability. The values are thus very dependent on the

situation and must be chosen on a case by case basis.

M = [δµT
0 δµT

1 · · · δµT
m] (16)

V = [δI0 δI1 · · · δIm] (17)

Given a set of m random transformation matrices, each with an associated

δµ and δI vector, two matrices can be built, as shown in Equations (16) and

(17). M is a 3×m matrix, while V is a n×m matrix, where n is the number

of points in R, as stated earlier.
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M = A V (18)

The general relation between the motion δµ and change in intensity δI can

now be found by solving Equation (18) for A.

A = M · (V t · V )−1 · V t = M · V + (19)

As n is chosen to be much greater than three, Equation (18) is an over-

determined system of linear equations. For this reason, a simple linear least-

square solution of the form shown in Equation (19), where V + is the Moore-

Penrose pseudoinverse, is suitable.

Because the motion model is simplified, a few hundred random shifts (n ≈
200) have been found to provide a good result.

6.3 Tracking Stage

As we will now see, once the training stage has been completed and the A

matrix is known, the tracking algorithm is trivial. The tracking starts with a

projection matrix Fcurrent = F0. When a new frame arrives from the camera,

the image is sampled at each point Fcurrent · R to obtain Icurrent. From this

intensity vector, δI = Icurrent − I0 can be computed. The motion δµ between

two consecutive frames can then be found using Equation (14). The current

state vector is then updated by adding δµ to the previous state vector µ. As

the state vector is an alternate representation of the transformation matrix,

updating the state vector effectively updates the transformation matrix.

6.4 Determining Optimal Parameters

While there is no clear mathematical way of determining the values for the

parameters used by this method, an empirical data analysis provides enough

information to choose adequate parameter values.

6.4.1 Number of Training Examples

The strength of the method is to be able to learn the changes in brightness

associated with changes in the transformation matrix. This training is done

by generating multiple random shifts and noting the associated effect on the

brightness vector. Figure 24 shows the average tracking error for different
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numbers of initial training shifts. Each data point of Figure 24 is found by

looking at the average tracking error over a 1000 frame sequence containing

an image moving in a circle.
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Figure 24: Plot of the average tracking error when the tracker is trained with
different number of examples.

Figure 24 demonstrates that the number of examples does not have an

important influence on the tracking accuracy, when the number of examples

is greater than approximately 10. Thus, in some very unlikely situations, all

examples may be similar and thus the tracker is unable to learn an appropriate

relation between motion and brightness changes. By looking at the graph, it

was decided that 100 examples would be used. Choosing a smaller number

would increase the probability of running into situations when the examples

would all be similar and choosing a larger number would increase the time

required by the training stage with no significant gain in tracking accuracy.

6.4.2 Number of Tracking Points

The plot shown in Figure 25 is generated by measuring the average tracking

error of a moving square image over a thousand frames for different amounts of

tracking points. It can be seen that the error is quite large when the number of

points is smaller than approximately 30. Like in Figure 24, there is a peak near

100, probably due to the generation of a bad training set. It is also interesting

to note that when the density of tracking points on the target image is too

high, the error increases. This can be seen from the errors measured with more

than 5000 points. Choosing 600 points seems to yield a small average error for

the current example. The image being tracked in the present test is a square

with sides measuring 256 pixels. This translates to roughly one tracking point

per one hundred image pixels, or one point for each ten pixel by ten pixel

square area.
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Figure 25: Plot of the average tracking error when different numbers of tracking
points are used.

6.5 Oscillations

Noise in the camera image creates variation in intensity, which can confuse

the tracking system. This results in the detected region oscillating around the

correct position. An example of oscillation along the horizontal axis can be

seen as the red curve of Figure 26. This curve was generated by tracking a

motionless surface. One way to reduce the effect of such behavior is to use

Kalman filtering. For this solution, three individual filters are configured to

filter each component of µ. For the implementation details of the Kalman filter

used, please refer to Section 12.1. The filter used to track the scale parameter

was initialized with Qi,i = 0.0001 and Ri,i = 0.1, meaning a very small amount

of process noise and a large amount of measurement noise. This roughly trans-

lates in the assumption that scale should not vary by large amounts quickly.

Similarly, the filters used to track the translation parameters were initialized

with Qi,i = 0.1 and Ri,i = 0.8. These values were found experimentally. If the

filtering strength is too high, tracking performance is reduced because small

motions would not be detectable. The output of such a strong filter is shown

as the blue curve of Figure 26. Thus, the filters must be configured to reduce

the effect of the oscillation, but eliminating the oscillation is an unattainable

goal. The output of a filter that reduces the effect of the oscillation without

causing too much lag is shown in blue on Figure 26. If a large amount of lag

is present, the tracker will loose the true position of the template and drifting

will occur.

Figure 26 has been generated by tracking a plane using a real camera. It

can be noted that even with the oscillation, the position of the plane can be

found to sub-pixel accuracy.
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Figure 26: Plot of the detected horizontal position of a tracked region over a
period of 1000 frames (red) and the outputs of Kalman filters (black and blue).

6.6 System Evaluation

As done for the fiducial marker detector of Section 5.8, the template tracker

will now be tested.

6.6.1 Sensitivity to Noise

As the algorithm considers multiple tracking points, the overall effect of noise

should be minimal if the noise distribution is Gaussian (white noise). The effect

of noise is also reduced by the use of Kalman filtering. To test the sensitivity

of the algorithm to noise, Figure 27 was generated by tracking an image over

a sequence of images. This test was executed 256 times with different noise

amplitudes.
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Figure 27: Plot of the average tracking error when the tracker is presented
with image sequences containing different amplitudes of noise.

As can be seen, in the presence of higher Gaussian noise amplitude, the

average error increases. While being expected, it is important to note that the
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error only increases by a single pixel. This means that the template tracking

algorithm presented in this section handles noisy images quite well.

To test the performance of the template tracker when presented with images

containing non-Gaussian noise, an experiment with variable amounts of salt

and pepper noise was conducted. The testing methodology was the same as

used in Section 5.8.1 to generate Figure 18. The results of the experiment are

shown in Figure 28. It can be seen that the effect of non Gaussian noise on the

average error is similar for both the fiducial marker detector and the template

tracker.
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Figure 28: Plot of the average tracking error when the tracker is presented with
image sequences containing salt and pepper noise with varying percentage of
noisy pixels.

6.6.2 Sensitivity to Motion

The goal of this test is to determine how much inter-frame motion is allowed

by the tracker. The average error was measured over sequences of a thousand

frames with different amounts of inter-frame motion. Figure 29 is a plot of

the results. The average error seems to grow somewhat linearly for motions

between zero and two pixels. There is a discontinuity between two and three

pixels, where the error increases.

From Figure 29, it can be seen that the tracker fails at a value between

two and three. To be safe, the motion should be kept below two pixels. In a

standard 30 Hz video feed, moving two pixels per frame means a total motion

of 60 pixels per second, which is acceptable. Faster motions could be tracked

by capturing images from the camera at a higher rate.
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Figure 29: Plot of the average tracking error for different amounts of motion.

6.7 Strengths and Weaknesses

The particular strength of the method is its very small online computational

cost. If the tracked object is known to be the same, the training can be done

a single time and used indefinitely. The algorithm’s strength also comes from

its ability to cope with large amplitudes of noise.

The major weakness of the template matching algorithm is that it is based

on the assumption that the same change in position will result in the same

change in brightness. While being a valid assumption in certain cases, it is

only true when both illumination and reflectance is uniform across the scene

and that the light intensity is maintained at a constant level throughout the

tracking sequence. This does not cause much problem in a factory environment

where lighting can be precisely controlled, but renders the algorithm virtually

useless in most real-world situations. The second potential problem with the

use of this method is that it is prone to drift. For this reason, the tracking

region should be periodically reset to prevent inaccuracies.

Finally, a small downside of this tracking method is that it requires manual

initialization. As will be seen in later section, an automatic initialization can

be developed.

6.8 Improving the Template Tracker

As stated earlier, the topic of object tracking plays an important role in the

augmented reality literature. For this reason, methods of addressing the down-

sides of certain types of tracking algorithms have been developed.

A recurring topic in the augmented reality field is the fusion of information

from different types of sensors to provide a more complete representation of

the world. Many tracking methods use external sensors such as gyroscopes
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[27] or inertial sensors [28] to acquire more information about the object being

tracked. The use of such sensors can be an integral part of a smart CNC

machine controller, as shown by the “Other Sensor” block of Figure 1 of Section

1. As the scope of the current thesis will be restricted to vision systems, these

sensors will not be explicitly discussed.
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7 Three-Dimensional Data From Two-Dimensional

Tracking

The previously covered trackers do not provide any information about the

depth of the tracked object. While it may seem problematic for the purpose

of tracking three-dimensional objects, the information from the camera cali-

bration can be used to compute depth.

Xw = ax · Zw + bx (20)

Yw = ay · Zw + by (21)

For any known point on the image, the calibration model can be used to

find the equations relating the position on the Zw axis to the positions on

the Xw and Yw axis of the point in real-world coordinates. These are linear

equations of the form shown in Equations (20) and (21).

Given a single 2D point, there are obviously an infinite amount of valid

solutions and it is thus impossible to find the depth of the point. The problem

can only be solved by adding one or more constraints to restrict the solution

space to a single point. A common way to add such a constraint is to use a

stereo camera setup. From two images, four equations are obtained and the

solution is found where the lines intersect.

s2 = (Xw1 −Xw2)
2 + (Yw1 − Yw2)

2 + (Zw1 − Zw2)
2 = D2

12 (22)

s2 = (Xw2 −Xw3)
2 + (Yw2 − Yw3)

2 + (Zw2 − Zw3)
2 = D2

23 (23)

s2 = (Xw3 −Xw4)
2 + (Yw3 − Yw4)

2 + (Zw3 − Zw4)
2 = D2

34 (24)

s2 = (Xw4 −Xw1)
2 + (Yw4 − Yw1)

2 + (Zw4 − Zw1)
2 = D2

41 (25)

2s2 = (Xw1 −Xw3)
2 + (Yw1 − Yw3)

2 + (Zw1 − Zw3)
2 = D2

13 (26)

2s2 = (Xw2 −Xw4)
2 + (Yw2 − Yw4)

2 + (Zw2 − Zw4)
2 = D2

24 (27)

When tracking a rectangular surface, the positions of four two-dimensional

points are known. This means that a total of eight equations relating these

points to their real world positions exist. In this particular case, the constraint

that can be added to solve the system is the known dimension of the sides of

the rectangle. If we consider a square of side s with vertices (Xw1, Yw1, Zw1),
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(Xw2, Yw2, Zw2), (Xw3, Yw3, Zw3), and (Xw4, Yw4, Zw4), labeled in a clockwise or-

der, the constraints would have the form of the expressions shown in Equations

(22) through (27).

By using Equations (20) and (21), the previous six equations can be rewrit-

ten only in terms of Xw’s. Thus six equations containing four variables need to

be solved. In most cases, no proper mathematical solution exists due to slight

inaccuracies in the calibration model and noise in the input data. For this rea-

son, the system of equations is solved by using a Levenberg-Marquardt (LM)

algorithm to find the least squares solution. A simple least squares approach

might also be appropriate, but as the LM algorithm had already been used for

the non-linear curve fitting of Section 5.7.7, it was also used for the current

task. While the LM algorithm might have a higher computational cost, if the

2D-to-3D conversion step is done offline, the added computational complexity

would not impact the performance of the final system. More details about the

offline computation will be presented in Section 7.1.

Xw1 = Xw2 = Xw3 = Xw4 (28)

Simplifications similar to those made to the template tracker can be used

to simplify the minimization problem. If the tracking region is a plane that is

orthogonal to the X axis of the camera model, it can be noted that the depth

of any point lying on the tracked plane will be the same. This simplification

adds an additional constraint on the system, shown in Equation (28).

(s2 −D2
12), (s

2 −D2
23), (s

2 −D2
34), (s

2 −D2
41), (2s

2 −D2
13), (2s

2 −D2
24) (29)

R =

[
(s2 −D2

12)
2 + (s2 −D2

23)
2 + (s2 −D2

34)
2

+ (s2 −D2
41)

2 + (2s2 −D2
13)

2 + (2s2 −D2
24)

] 1
2

(30)

This final constraint reduces the parameter space of the optimizer to a sin-

gle dimension, which greatly reduces computation time. To provide a rough

estimate of the increase in speed, the average time required to run the mini-

mization stage both with and without the final constraint has been measured
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over a thousand frames. The average time required to run the optimization

without the constraint is 0.00026 seconds and when the constraint is added, the

time decreases to 0.00006 seconds. The simplification allows the system to be

solved roughly four times faster. The six remainders used for the Levenberg-

Marquardt minimization are shown in Equation (29) and the remainder func-

tion has the form shown in Equation (30).

Given a marker known to be located at exactly Xw = 0, a sweep can be

done to find the values of the remainder function for different values of Xw.

The plot of the remainder is shown in Figure 30 where it can be seen that the

minimum is indeed very close to Xw = 0.
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Figure 30: Plot of the remainder function for different values of Xw.

While leaving the marker at a position of Xw = 0, the two-dimensional

position of the four circles contained in the fiducial marker can be randomly

shifted to simulate uncertainty in the 2D detector’s output. Figure 31 demon-

strates that the error grows linearly with respect to the amplitude of noise in

the 2D positions of the circles. Please note that the amplitude of the curve in

Figure 31 is shown as an example and is valid only for the calibration parame-

ters used. This means that if any of the camera parameters change, the curve

would have to be regenerated.

7.1 Implementation Notes

The optimization stage is the most computationally expensive step in the

overall tracking system. For a practical implementation, the computational

costs could be greatly reduced by precomputing a table of conversions from

two dimensional point sets to their respective three dimensional coordinates.

The use of such a lookup table is only possible if a somewhat large amount of

storage is available. The exact amount of storage required is dictated by the
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Figure 31: Plot of the error for different amplitudes of noise.

size of the bins used to discretize the space of 2D coordinates.

As an example, if we consider an image with a resolution of 640 pixels by

480 pixels, the lookup table would contain 640 · 480 = 307200 cells. Now,

assuming that the three-dimensional volume in which the marker is allowed

to move is discretized into integer units such as millimeters or micrometers

and that there is less than 216 such units along each of the three axes, the

three-dimensional coordinates could be stored as an array of three 16-bits

integers (short int). Considering that each cell of the table is required to hold a

three element array, the total memory requirement is 640·480·3·16 = 14745600

bits, roughly 15 megabytes. If the desired precision requires a larger number of

bits to store the integer representation of the three-dimensional coordinates or

if the image has a larger resolution, the memory requirement will be greater.

With the available memory of modern computers, storing such a lookup table

should not be a problem.
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8 Model-Based Tracking

The trackers of Sections 5 and 6 both required an extra step to convert the

output of the 2D tracker to a 3D position, as demonstrated in Section 7. The

present section will detail a tracker that tracks directly in the three dimen-

sional space by fitting the 3D model of an object to edges in the input image.

The model-based tracker implemented here is presented in multiple papers

co-authored by Tom Drummond [7],[29], and [30]. A diagram showing the

different steps of the tracking algorithm is presented in Figure 32.

Camera Pa-

rameter Matrix

Compute Pro-

jection Matrix
Render Model

Initial Posi-

tion Estimate

Update Eu-

clidean Matrix
Locate Visible Edges

Compute Motion
Detect Edges in

Camera Image

User-Provided Information Main Tracking Loop

Figure 32: Block diagram of the methodology of the model-based tracker,
reproduced from [29]

The following subsections will provide more information about the algo-

rithm of the tracker.

8.1 Camera Model

For the purpose of simplifying the problem, the camera model [11] used for

the implementation of the tracker is the same as the one OpenGL uses. This

reduces the amount of coordinate transformations required to convert between

different coordinate systems. It is also interesting to note that OpenGL uses

homogeneous coordinates, so that both projection matrices and geometric

transformations are represented as 4 by 4 matrices.
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M =

[
sR T

0T 1

]
(31)

The OpenGL camera system is governed by the model-view, the projec-

tion and the view-port matrices. To prevent confusion with the real camera

projection matrices, a caligraphic font will be used for the OpenGL matrices.

The projection matrix P defines the size and shape of the perspective frustum,

namely, the volume of space that will be visible when a scene is rendered. This

matrix will be constant through the execution of the tracker. The view-port

V = [X,Y,W,H] is a 4-dimensional vector defining the size of the rendered

image where X and Y represent the pixel coordinates of the north-west corner

of the view-port, W represents the width of the image, and H the height. Like

the projection matrix, the view-port remains constant. Finally, the model-

view matrix M encodes the position (T ), rotation (R), and scale (s) of the

scene with respect to the camera. Its form is shown in Equation (31). This

matrix will be updated for each new frame acquired from the camera.

The scale parameter s can be set to 1 as the current algorithm assumes

that the size of the object being tracked remains constant throughout the

execution. Changes in size of the object on the projection plane are caused by

translations along the z-axis.

8.2 Model Rendering

In order to obtain edge information, a line-art rendering of the model is gener-

ated. The OpenGL library provides a polygon mode to generate such render-

ings by drawing only the edges of polygons. An example of a cube rendered us-

ing this polygon mode is shown in Figure 33(a). While containing the model’s

edges, this first rendering does not provide information about which edges are

hidden because of occlusion. Figure 33(b) demonstrates that occluded edges

can be removed by painting the surfaces with an offset fill. At this point, line

drawings of simple polyhedral models can be obtained.

If the model of the tracked object is a tessellated smooth model, the ren-

dering method detailed earlier will cause some problems. This can be seen

in Figure 34(a). For smooth surfaces, only the contours should be rendered.

Enabling face culling when rendering the model hides edges that should not be

detectable, leaving only the contour of the model, as demonstrated in Figure

34(b). Figure 34(c) shows that face culling removes visible edges when render-
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(a) (b)

Figure 33: Rendering of the edges of a polyhedral model (a) without painting
the surfaces and rendering of the same model (b) with an offset surface fill to
hide edges that are non visible.

ing simple geometric models. For this reason, care must be given to determine

the best way to render a model based on its geometry.

(a) (b) (c)

Figure 34: Rendering of (a) the edges of a tessellated smooth model. Rendering
(b) with face culling enabled. (c) Face culling of simple geometric models.

From these rendering methods, models of varying complexity can be ren-

dered. Figure 35 provides two examples of more complex models being ren-

dered. Both models shown here are Creative Commons models.

8.3 Locating Edges

Once an edge image is rendered, the edges of the model must be located in the

image from the camera. Points are placed at regular intervals on the visible

edge segments of the rendered image. The exact number of points can be

changed, as seen in Figure 36. The set of tracking points will be referred to as

P .
For each point in P , a line in the direction perpendicular to the edge is

searched in the camera image to locate an edge.
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(a) (b)

Figure 35: Rendering of (a) a more complex polyhedral and (b) smooth model.

(a) (b)

Figure 36: A variable number of points on visible edge segments can be chosen.
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The first approach evaluated for the current implementation was a naive

maximum gradient search. The problem with this approach is that the max-

imum gradient along the search path does not necessarily correspond to the

correct edge. Such a situation can be seen in figure 37(a), where the red points

are the point in P and the green line represent the distance to the detected

edges in the direction of the normal. It can be seen that edges are properly

detected, but the edges found are often not the ones corresponding to the

tracking points.

The second approach was to use non-maxima suppression on the gradients

along the normal and weight each remaining gradients by an inverse function

of their distance to the point in P where the search started. As can be seen in

Figure 37(b), there are still a few mis-detections, but most edges are located

properly.

(a) (b)

Figure 37: Search for the edge closest to points on the visible line segments.
Naive search for the strongest edge is shown in (a). Edge search using non-
maxima supression and distance weighting is shown in (b).

e = [dP0, dP1, · · · , dPn]
T (32)

An error vector e can be constructed from the distances between the track-

ing points and the edges found, as shown in Equation (32). This vector quan-

tifies the edge-normal distance between the current state of the model and the

image from the camera.
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8.4 Computing Motion

G1 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

, G2 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0



G3 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

, G4 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 (33)

G5 =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

, G6 =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


Now that an error vector is known, the transformation required to modify

the state of the model to fit the camera image can be computed. Motion is

considered to be a mixture of six transformations [29], namely, translations

and rotations along each of the three axes. The set of matrices in Equation

(33) show the form of each transformation, which are referred to as motion

generators. The description of the algorithm will include all six generators even

if only the first three generators are required as the CNC machine considered

can only move along the three axes, as discussed in previous sections.

M = exp

( 6∑
j=1

αjGj

)
(34)

M ≈ I +
6∑

j=1

αjGj (35)

The transformation matrix M can be created from the generators from the

matrix exponential shown in Equation (34). Equation (35) provides a first

order approximation of the exponential. This approximation, used to simplify

computations, is stated to be appropriate for small displacements between
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frames [29]. This assumption will be tested in a later section.

JA = e (36)

TheA = [α1, α2, α3, α4, α5, α6] vector of Equations (34) and (35) represents

the quantity of each generator that needs to be applied to correct the state of

the model. This is what needs to be found. Equation (36) shows the system

that can be solved to find A.

Jij =
∂ei
∂αj

= n


∂u

∂Gj
∂v

∂Gj

 (37)

The J matrix of Equation (36) is a Jacobian matrix with elements of the

form shown in Equation (37) (reproduced from [29]), where n is the unit normal

to the edge where the ith point is located.

∂u

∂Gj

=
u′

w′ −
u

w
(38)

∂v

∂Gj

=
v′

w′ −
v

w
(39)

The partial derivatives of the projected 2D coordinates u and v with respect

to the jth generator are found numerically using Equations (38) and (39).

 u

v

w

 = PM


x

y

z

1

 (40)

 u′

v′

z′

 = PM(I +Gj)


x

y

z

1

 (41)

The two sets of coordinates (u, v, w) and (u′, v′, w′) from Equations (38)

and (39) are the projected 2D coordinates of the 3D coordinates (x, y, z) of

the tracking point. The projections are done using Equations (40) and (41).

A = [JTJ]−1JTe (42)
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Mt ←Mt−1(I +
6∑

j=1

αjGj) (43)

Once the Jacobian matrix has been filled, the system described in Equation

(36) can be solved as a linear least squares problem. The form of the solution is

shown in Equation (42). Finally, the model-view matrix can then be updated

by using Equation (43).

8.5 Stabilization [
J

I

]
A =

[
e

d

]
(44)

Stabilization refers to the addition of constraints to make the solution more

robust. The stabilization method proposed in [6] was implemented. The first

step of the stabilization is to prevent cases when no measurements are available.

This situation translates in the J and e matrices being empty, and thus no

solution could be computed by using Equation (36). To solve this, Equation

(36) is replaced by Equation (44), where I is the identity matrix.

IA = d (45)

This new system is very similar to that of (36), but contains a set of added

rows. If no measurements are available, Equation (44) becomes the simple

linear system shown in (45).[
J

W

]
A =

[
e

Wd

]
(46)

The solution to Equation (45) is obviously A = d. Thus, d should be set

to a default solution. Such a solution can be computed from the velocity of the

object or simply set to zero, as done in the current implementation. To make

the method even more robust, the lower part of Equation (44) is multiplied by

a diagonal matrix, as shown in Equation (46). The elements on the diagonal of

W are inversely proportional to the standard deviation of their column in J.

This prevents the default solution from having a large influence on the results

when measurements are available.
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8.6 Tracking Performance

8.6.1 Small Displacement Assumption

As stated in Section 8.4, the inter-frame motion is assumed to be small for the

method to be valid. No formal definition of small is proposed in [29]. This is

obviously due to the fact that the maximum inter-frame motion is dependent

on the shape of the model being tracked. To obtain a qualitative idea of

what “small” means, a model was tracked over sequences of 1000 frames with

varying amounts of motion. In Figures 38 and 39, the error is defined as the

pixel distance between tracking points and image edges. It must be noted that

an average distance greater than approximately 15 reflects that edges could

not be located and the tracker failed to properly track the model. Figure 38

shows that the tracker fails at a value between two and three.
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Figure 38: Plot of the tracking error given different amounts of motion.

Restricting the plot to the range where the method does not fail yields the

plot shown in Figure 39. The error seems to increase linearly with respect to

motion, but fails when the amount of motion is greater than approximately

two and a half pixels.

As can be seen, the small motion assumption is valid up to a motion of

two and a half pixels. Given an image sequence running at thirty frames per

second, this translates into a motion of 75 pixels per second.

8.6.2 Lag

The model tracker presented in this section provides a position that lags behind

the true position of the object. Figure 40 shows that if the true horizontal mo-
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Figure 39: Plot of the tracking error given different amounts of motion.

tion of an object is sinusoidal, the output of the tracker will also be sinusoidal,

but with a phase difference.
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Figure 40: Plot of the output of the tracker showing lag.

8.6.3 Sensitivity to Noise

Figure 41 shows the relation between the average tracking error and the am-

plitude of additive Gaussian noise. The error is measured in 2D on the image

plane. It can be seen that the error stabilizes at a value of approximately 100

pixels. This is due to the fact that when a large amplitude of noise is present,

the edge detection fails to find the real edges of the model and instead find ran-

dom points where noise causes large intensity gradients. Given a high enough

noise amplitude this misdetection happens for all of the tracking points. Be-

cause of the random nature of the noise, the model is pulled almost equally in

all directions and the resulting motion is nullified. The results shown in Figure

41 indicate that with any amount of noise, the algorithm fails.

It can also be seen from Figure 41 that even low noise intensities can cause

instabilities in the tracking algorithm. To make the results better, filtering

can be applied. The ideal filter to use should be one that removes noise
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Figure 41: Plot of the average tracking error when the tracker is presented
with image sequences containing different amplitudes of noise.

without blurring strong edges. Such an ideal filter can be approximated by

the application of a band-pass filter in the frequency domain. A low-pass filter

smooths out high frequency noise and edges while a high pass filter accentuates

them. The band-pass filter shown in Figure 42 aims to smooth out noise while

retaining high intensity gradients around edges.

Figure 42: Spatial representation of the bandpass filter used.

Figure 43 gives an example of a noisy image and the resulting image after

applying the filter. While the results are good, this filtering comes with an

important computational cost. Frequency-based filtering requires the applica-

tion of two discrete Fourrier transformations to transfer from spatial domain

to frequency domain and back. This computational complexity could be min-

imized by finding an equivalent spatial kernel to be applied to the image via a

convolution, but this is outside of the scope of this thesis.

Band-pass filtering does remove some of the noise, but creates stability

problems. Tracking results shown in Figure 44 show that the average tracking

error increases slightly from that of Figure 41.

Another way of removing the effect of noise is to extract edges prior to

the application of the algorithm. This can easily be accomplished by applying

horizontal and vertical Sobel filters and combining the result. As can be seen

in Figure 45(a and b), the application of such a filter retains some of the noise
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(a) (b)

Figure 43: Example of (a) a noisy image and (b) output of bandpass filter.
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Figure 44: Plot of the average tracking error when the tracker is presented with
band-pass filtered image sequences containing different amplitudes of noise.
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of the original image. Thresholding the output of the filter as done in 45(c)

provides a good approximation of the edges.

(a) (b)

Figure 45: Example of (a) a noisy image, (b) output of Sobel edge detection
filter, and (c) thresholded result.

While edges are detected correctly in most cases, the average tracking error

also increases when Sobel edge detection is added to the tracker. Figure 46

clearly shows that the tracking performance is not stable even with explicit

edge extraction.
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Figure 46: Plot of the average tracking error when the tracker is presented with
band-pass filtered image sequences containing different amplitudes of noise.

8.7 Strengths and Weaknesses

The most significant advantage of this tracker with respect to the two-dimensional

trackers presented in Sections 5 and 6 is that no modification to the machine

is required. A precise model of the tracked object is all that is required. This

makes this tracker the less invasive of the three presented.
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As shown throughout Section 8.6, the tracker is not stable. The instability

has been observed to be mostly due to drift that accumulate over the entire

sequence. This tracker is thus not an ideal choice for long term tracking.

It can also be seen that the accuracy of this tracker does not compare to the

sub-pixel accuracy of the two dimensional trackers of Sections 5 and 6. Finally,

the model-based tracker is very sensitive to noise, which makes it a sub-optimal

choice for real-world deployment.
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9 Simulator Tests

The goal of the simulator is to test the ability of the methods to work in a

setting similar to the real world while allowing control over most scene param-

eters.

By looking at the test results from Sections 5, 6, and 8, it can be seen that

the fiducial detector provides a more precise 2D position than the template

matching method, which in turn, is better than the model-based tracker. The

fiducial detector has also been shown to perform well on sequences containing

high amplitudes of noise and large motions. For these reasons, the fiducial

marker detector will be used from this point.

The use of a simulator provides the possibility of running experimental tests

that would be impractical and potentially quite lengthy in the real world. It

also eliminates uncertainty in the measuring tools and thus, provides an almost

ideal testing environment.

9.1 Setup Procedure

This section aims to describe all the steps required to create a complete track-

ing system.

For the first part of the setup, it will be assumed that a single fiducial

marker containing the four black circles is placed on the rotary tool of the

machine as shown in Figure 47.

Figure 47: Sample frame showing the position of the fiducial marker on the
machine.

A set of frames from different camera positions and orientations is generated

to extract positive and negative examples to train the circle detector of Section
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5. This step is required for both the fiducial tracker and the camera calibration

step. For the simulator tests, the size of the sub-window used by the circle

detector has been increased to 16 pixels by 16 pixels to allow slightly larger

circles to be found.

9.1.1 Camera Calibration

The virtual camera of the simulator can be calibrated by first generating a

sequence of 1000 images containing the calibration image, a sample frame of

this sequence is shown in Figure 48(a). The result of applying the detector

to a frame of the sequence is shown in Figure 48(b). From these points, the

calibration template is found geometrically, as shown in Figure 48(c). Once

the calibration template is properly detected, the algorithm detailed in Section

4 is applied to get a calibrated camera model, which allows the drawing of the

three Cartesian axes, as done is Figure 48(d).

(a) (b)

(c) (d)

Figure 48: The four steps of camera calibration applied to the simulator: (a)
Image containing the calibration template; (b) circle marker extraction; (c)
geometric calibration marker detection; and (d) calibrated virtual camera.

It is important to keep in mind that the standard coordinate system used
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Figure 49: Coordinate System used by OpenGL (a) and the CNC machine
(b).

by OpenGL to generate the image of the machine is not the same as the one

found when calibrating the camera. To prevent potential confusion, the two

coordinate frames are shown in Figure 49. The coordinate frame for CNC

machines commonly places the Z axis perpendicular to the ground and the X

axis along the longest side of the machine. Figure 49(b) shows the coordinate

system used by most CNC machines.

9.1.2 Sensor Planning

For the tracking system to succeed, it is crucial for the camera to be positioned

and oriented properly. Sensor planning is a research area within the field of

computer vision that aims to find methods to determine sensor parameters to

maximize the efficiency of vision algorithms. One approach to find the optimal

position and orientation is to generate scenes with different sets of parameters

and test the performance of the visual system on them. The metrics used

to judge the performance are determined by the problem at hand [31]. In

the current case, the optimal camera configuration is one that maximizes the

perceived two dimensional movement on the image plane when the machine

moves in the three dimensional plane. This configuration will provide the

greatest resolution along each of the three axis.

In a similar fashion to [32], spherical coordinates were used for this test.

The camera position was assumed to be on the surface of a sphere centered

around the machine and the camera was pointed toward the center of the

sphere. The radius of the sphere was kept constant while the angles around

the Y and Z machine axis were modified. The first point to consider is that un-

der certain extreme camera orientations, the marker might not be detectable.

Figure 50 displays a frame in which the marker is barely visible and where the
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fiducial detector might fail to produce a proper detection.

Figure 50: Frame showing that the marker is barely visible.

The first step to determine the optimal camera orientation is thus to find

the set of viewing angles that produce images with the marker clearly de-

tectable. To test the visibility of the marker, the camera was moved to different

positions on the sphere surface and the fiducial detector was applied to a few

hundred frames. The ratio between the number frames where the marker was

successfully detected and where the detector failed for each camera orientation

is shown in Figure 51.
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Figure 51: Visibility ratio of the marker with respect to different camera ori-
entations. The scale of the right of the plot relates the shading color to the
visibility ratio.

To restrict the search for the optimal settings, the simulator was used to

compute the two-dimensional distance that occurs when the marker on the
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machine moves by a unit distance, in this case, 1 mm, for different camera

orientations. The experiment was executed separately for motion along each

of the three axis. The results of this experiment are shown in Figure 52.
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Figure 52: Image representation of the surfaces showing the amount of 2D
motion caused by a unit 3D movement along the (a) X machine axis, (b) the
Y machine axis, and (c) the Z machine axis. The scales on the right of each
plot relate the shading color to the amplitude of 2D motion.

For each camera orientation, a vector M = [V,Mx,My,Mz]
T containing

the normalized visibility ratio (V ) and the normalized amount of motion along

each axis (Mx,My,Mz) can be constructed from the graphs in Figures 51 and

52. A graph containing the 2-norm ‖M‖ of each of these vectors can be seen

in Figure 53. The maximum of this surface is located at 42 degrees around

the Y axis and −33 degrees around the Z axis. This represents the optimal

monocular camera configuration.

Now that the orientation of the camera has been found, the distance be-

tween the camera and the machine must be determined. It is important to
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Figure 53: Norm of theM vector for different camera orientations. The scale of
the right of the plot relates the shading color to the amplitude of the 2-Norm.

note here that the distance between the camera and the machine is the radius

of the sphere on which the camera is moved. The study done here considers a

fixed field of view and a varying camera distance. The field of view used for

the test is set to a value very similar to that of the physical camera used in

Section 10. The combination of field of view and camera distance must be set

so that the entire workspace of the machine is visible. Thus, if a fixed field

of view is considered, the camera must be placed at a distance allowing the

entire machine to be seen. In a similar manner to what was presented earlier,

the visibility ratio of the marker for different camera distances is plotted in

figure 54, while the plot of the amount of 2D motion generated from a unit 3D

displacement is shown in Figure 55.
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Figure 54: Plot of the visibility ratio for different camera distances.

A good way of embedding the information from both figures into a single
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Figure 55: Plot of the amount of 2D motion caused by a unit 3D movement
along the three machine axis for different viewing radii.

graph is to multiply the average of the normalized values from Figure 55 with

the ratio from Figure 54. The multiplied curve can be seen in Figure 56. The

maximum of this curve can be found at a radius of 1948 units (millimeters).
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Figure 56: Multiplication of the curve in Figure 54 and the normalized average
of the three curves in Figure 55.

Camera resolution must be chosen so that circles fit within the 16 pixels

by 16 pixels window used by the circle detector. This restriction can be easily

overcome by changing the size of the circles composing the fiducial marker.

Figure 57 shows that the amount of perceived 2D motion increases linearly with

respect to camera resolution, thus, larger camera resolutions are preferable.

Other camera properties such as focal length and radial distortion will not

be tested, but the fiducial detector has been shown to be robust to changes in

camera parameters when trained properly.

9.2 Expected Tracking Accuracy

In order to predict the accuracy that can be expected from the complete sys-

tem, we must consider the two most important accuracy limiting factors.
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Figure 57: Amount of perceived 2D motion caused by a unit translation in 3D
for different camera resolutions. (vertical camera frame dimension is shown)

9.2.1 Fiducial Detector

The first one is the accuracy of the 2D fiducial detector. As seen in Section 5,

if less than 10% non-Gaussian noise is assumed to be present in an image, the

markers can be found with an error of approximately 0.6 pixels, regardless of

the camera resolution. This means that to be properly detectable, a motion of

the marker in 3D space needs to generate a shift of at least 0.6 pixels on the

image plane.

The shift in the camera image due to a movement in 3D space depends on

a few factors. These factors include the amplitude of the 3D movement, the

resolution of the camera, the camera position, and the camera field of view.

For the current test, the virtual camera will be positioned according to the

results of the experiments presented previously in this section. The field of

view will also be the same as in the previous experiments. To summarize the

setup, the camera is placed quite far from the CNC machine (approximately

two meters) and has a small field of view (approximately 16◦).

As an example, we can find the camera resolution required to achieve a

3D tracking resolution of 0.01 mm. To do so, the camera projection system

used by OpenGL will be used to mathematically determine the required camera

resolution. For convenience, a few of the projection equation from the OpenGL

documentation have been reproduced here.

P =


cot( f

2
)

a
0 0 0

0 cot(f
2
) 0 0

0 0
zf+zn
zn−zf

2·zf ·zn
zn−zf

0 0 −1 0

 (47)
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The OpenGL projection matrix P has the form shown in Equation (47),

where f is the vertical field of view, a is the field of view aspect ratio, zn is the

distance to the near clipping plane of the frustum, and zf is the distance to

the far clipping plane of the frustum. The field of view aspect ratio is taken to

be the same as the image field of view. The projection matrix is the OpenGL

equivalent to a real camera intrinsic parameters matrix.

M =

[
R T

0T 1

]
(48)

The modelview matrix M encodes the position and orientation of the scene

relative to the camera. It is the OpenGL equivalent of a real camera’s extrin-

sic parameters matrix. This matrix, whose form is shown in Equation (48)

contains the 3x3 rotation matrix R and the 3-dimensional translation vector

T.

u = Fx ·
v′
0 + 1

v′
2 + 1

(49)

v = Fy ·
v′
1 + 1

v′
2 + 1

(50)

Now, to project a point in space represented by v = [x, y, z, 1]T to a set of

screen coordinates of the form w = [u, v, 1]T , the two transformation matrices

P and M are applied to v to get v′ = PMv. The u and v components of the

screen coordinates can then found by applying Equations (49) and (50), where

Fx and Fy are the width and height of the camera image (OpenGL window),

respectively.

wm =

[
Fx ·

v′
m0 + 1

v′
m2 + 1

, Fy ·
v′
m1 + 1

v′
m2 + 1

, 1

]
(51)

At this point, the projection from 3D world coordinates to 2D screen co-

ordinates has been defined. It is now possible to find a relation between a

motion in 3D space and the associated shift in the 2D image. Given a three-

dimensional displacement ∆v, the new position of the point vm is equal to

v + ∆v. The new position of the 2D image has the form shown in Equation

(51).

∆u =

∣∣∣∣Fx ·
(
v′
m0 + 1

v′
m2 + 1

− v′
0 + 1

v′
2 + 1

)∣∣∣∣ (52)
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∆v =

∣∣∣∣Fy ·
(
v′
m1 + 1

v′
m2 + 1

− v′
1 + 1

v′
2 + 1

)∣∣∣∣ (53)

‖∆w‖ =
√

(∆u)2 + (∆v)2 (54)

The amplitudes of the horizontal and vertical shifts on the image plane

caused by the 3D motion are shown in Equations (52) and (53), respectively.

The resulting amplitude of the 2D shift can be computed using Equation (54).

To obtain the tracking resolution stated earlier, a motion of 0.01 mm will

need to cause a shift of the marker on the 2D image of at least 0.6 pixel. The

3D motion of 0.01 mm can be encoded as ‖∆v‖ = 0.01 and the required 2D

shift can be written as ‖∆w‖ = 0.6.

Because of the assumption that the projection and model-view matrices

are known and kept constant, there are eight unknowns: the horizontal and

vertical resolutions (Fx and Fy) of the camera, the components of the initial

position v = [x, y, z, 1]T , and the components of the motion vector ∆v =

[∆x,∆y,∆z, 0]T . If the aspect ratio of the camera is assumed to be known,

then Fx = a · Fy where a = 4/3 in most “fullscreen” cameras.

0.62 = F 2
y ·

[
16

9
·
(
v′
m0 + 1

v′
m2 + 1

− v′
0 + 1

v′
2 + 1

)2

+

(
v′
m1 + 1

v′
m2 + 1

− v′
1 + 1

v′
2 + 1

)2]
(55)

Another simplifying assumption that can be made is that the initial posi-

tion is v = [0, 0, 0, 1]T . For the current projection and modelview matrices,

this means v′ = [0.0000, 0.0000, 0.9967, 1.0000]T . The system to solve can be

simplified to the form shown in Equation (55).

The only missing component needed to solve the system is information

about the 3D displacement. The norm of the displacement vector is known,

but the direction is not. A quick solution to this problem is to try different

displacement directions and compute the average required frame resolution.

The plot shown in Figure 58 can be generated by varying the desired 3D

resolution and computing the required vertical camera resolution.

For the example considered here, if a 3D resolution of 0.01 mm is required,

a camera resolution of 81616 pixels by 61212 pixels (approximately 5000 mega

pixels) would be necessary. By today’s standard, with the fiducial tracker

presented in this thesis, a tracking resolution of 0.01 millimeter is not feasible.
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Figure 58: Plot of the required vertical camera resolution for different 3D
resolutions

However, the plot in Figure 58 shows quite clearly that the required camera

resolution drops rapidly when the 3D resolution decreases. The plot can also

be used to predict the 3D resolution for any given camera resolution. Table 3

shows the expected 3D resolution for common 4:3 frame sizes . These values

are only valid for the projection matrices used for this test, but they can be

generated for any camera system by changing the projection matrices.

Maximum 3D
Name Resolution (pixels) Resolution (mm)

QXGA 2048 × 1536 0.40
UXGA 1600 × 1200 0.51
SXGA+ 1400 × 1050 0.58
XGA 1024 × 768 0.80
SVGA 800 × 600 1.02
VGA 640 × 480 1.27

Table 3: Table of common 4:3 camera resolutions and the 3D resolution ex-
pected based on the fiducial detector

9.2.2 Conversion between 2D and 3D coordinates

The second accuracy limiting factor is the accuracy of the process used to

convert 2D coordinates into 3D coordinates. As seen in Section 7, if uncertainty

is present in the 2D positions of the four corners, the computed 3D position

is not exact. If we again assume that the 2D position of the fiducial has an

error of 0.6 pixels and that all camera properties other than resolution remain

constant, the error caused by a 0.6 pixel shift can be computed using the same

method as in Section 7. Instead of computing the error for different amplitudes
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of the noise, different camera resolutions will be used. As the direction of the

shift caused by the 0.6 pixel shift is unknown, the error is computed for 100

different 2D shifts of amplitude 0.6 pixels. The results of this test are shown

in Figure 59.
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Figure 59: Plot of the 2D to 3D conversion error for different camera frame
resolutions

The noteworthy part of Figure 59 is that the curve settles to a value of 0.23

mm. Even if the camera resolution increases, the inaccuracies in the fiducial

detector limit the 3D resolution to 0.23 mm. The maximum theoretical average

3D resolution achievable with the tracking system detailed in this thesis using

the camera configuration presented in this section is thus 0.23 mm. With high

resolutions, the standard deviation, also shown in Figure 59, settles to a value

of approximately 0.07 mm. Table 4 presents the average 3D error expected for

a few common frame sizes.

Resolution Average 3D Standard
Name (pixels) Error (mm) Deviation (mm)

QXGA 2048 × 1536 0.76 0.29
UXGA 1600 × 1200 0.98 0.37
SXGA+ 1400 × 1050 1.12 0.43
XGA 1024 × 768 1.56 0.59
SVGA 800 × 600 2.02 0.75
VGA 640 × 480 2.55 0.94

Table 4: Table of common 4:3 camera resolutions and the expected average
3D error expected and the standard deviation of the error based on the 2D to
3D conversion

It is important to note that all of these prediction do not take into consid-

eration potential inaccuracies in the camera model due to the calibration. For
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this reason, the errors that will be obtained in the following tests will most

likely be higher.

As most of the error comes from random sources such as noise, it is difficult

to predict the exact resolution of the system. However, the analysis done in

this section provides an upper bound on the resolution of the tracking system.

9.3 Tracking Tests

The visual simulator will now be used to provide a better approximation of the

performance of the system applied to real camera input. To do so, three track-

ing sequences, each containing 1000 frames, will be generated for three different

simulated camera resolutions. The three sequences show a machine travelling

along each of the three machine axis. While generating the sequences, the

true position of the machine is recorded in a file. Applying the fiducial tracker

to each sequence and computing the distance between the detected machine

position and the position recorded in the ground Truth file allows the creation

of Table 5. The execution time per frame will also be recorded to provide an

idea of the frame rate that can be expected when running the tracker. The

execution time is recorded in Table 6.

Table 5 clearly demonstrates that as the frame resolution increases, both

the mean error and the standard deviation of the error decrease. While the

errors are higher than the theoretical minimum, these findings are consistent

with the results found in Section 9.2. The difference between the current

results and those of Section 9.2 can be attributed mostly to uncertainties in

the camera calibration. Section 9.2 assumed a perfect camera calibration, while

the current experiment was executed with the use of the camera calibration

algorithm presented in Section 4. This algorithm, while found to be adequate,

is limited in precision by the use of the circle detector and the parameter

optimization stage, which both introduce slight inaccuracies. Table 6 shows

that higher resolutions require higher execution times per frame. The perfect

balance between tracking error and frame rate has to be determined based on

the action being tracked.

9.4 Concluding Remarks

The visual simulator has proven to be an efficient sensor planning tool to

determine the parameters of the vision system, such as camera position and
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resolution. It was also able to provide a theoretical limit of the accuracy of the

system. Finally, the overall tracker has been executed on simulated sequence

to provide an estimate of the accuracy on real image sequences.

Measured errors

Resolution Sequence
Minimum Maximum Mean Std. Dev.
(mm) (mm) (mm) (mm)

640×480
X Motion 00.38 36.57 11.45 06.51
Y Motion 00.29 40.31 13.32 07.29
Z Motion 00.19 27.14 09.38 05.88

800×600
X Motion 00.22 18.95 11.03 04.74
Y Motion 00.29 22.76 10.05 05.54
Z Motion 00.31 17.34 08.00 04.10

1280×960
X Motion 00.47 16.95 06.54 03.14
Y Motion 00.12 16.29 06.28 03.19
Z Motion 00.13 14.68 05.85 02.63

Table 5: Statistics concerning the distance between real position and detected
position measured over sequences of 1000 frames

Measured Execution Time Per Frame

Resolution Sequence
Minimum Maximum Mean Std. Dev.

(ms) (ms) (ms) (ms)

640×480
X Motion 50 170 67 09
Y Motion 50 170 65 09
Z Motion 40 160 61 08

800×600
X Motion 80 170 91 12
Y Motion 80 180 93 14
Z Motion 80 190 93 16

1280×960
X Motion 290 420 318 11
Y Motion 290 430 316 10
Z Motion 300 430 328 11

Table 6: Statistics concerning the computation time per frame measured over
sequences of 1000 frames

Overall, this section has shown that, in theory, the sub-pixel accuracy of

the fiducial detector limits the accuracy of the overall system and that, in

a real implementation, the combination of camera calibration and 2D to 3D

conversion is the limiting factor.
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10 Results

10.1 Experimental Setup

The platform used for the real world experiments is a FireBall V90 CNC Router

from Probotix, shown in Figure 10.1.

Figure 60: Physical machine used for the last stage of testing. source: http:
//www.probotix.com/

The obvious problem when testing a tracking algorithm on a physical ma-

chine is the limited ability of obtaining accurate measurements of the machine

to compare with the output of the tracker. This can be solved by using a pen

plotting attachment and drawing points on a piece of paper located under the

machine. While using a pen is a valid solution, it only records the position of

the machine on the X and Y axis. This means that the accuracy of measure-

ments along the Z axis will be limited. As seen in previous sections, the 2D

to 3D conversion stage optimizes on the X axis and computes the Y and Z

position from the X value found. The simulator has demonstrated that given a

proper camera calibration, this step is successful. For this reason, the current

tests will limit the motion of the machine to the X and Y axis.

10.2 Tests

Two distinct tests will be done to determine the performance of the visual

tracker. First, a qualitative test will be used to obtain a general idea of the

tracking system. The second test will provide measurements of the accuracy
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of the tracker. For each of the two tests, the camera will be positioned as

close as possible to the optimal position found in Section 9 and calibrated

using the method detailed in Section 4. Figure 61 shows some frames from the

calibration step. No discussion of calibration will be made here as it has been

covered in previous sections.

(a) (b)

(c)

Figure 61: Camera calibration for the physical tests: (a) circle marker extrac-
tion; (b) geometric calibration marker detection; and (c) calibrated camera.

For convenience, the camera will record image sequences of the machine

and the tracking will be done offline. The execution time required per frame

will, however, be measured to ensure that the algorithm is capable of running

in real time.

10.2.1 Qualitative Test

This first test involves tracking the position of the machine while it draws a

known geometric shape. This provides the opportunity to qualitatively com-

pare the drawing from the machine to the output of the tracker. The drawing

is generated by the pen plotter attachment and provides a record of the posi-
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tions visited by the machine. The output of the tracker along the X and Y

machine axis can be represented as a scatter plot to obtain an image of what

the tracker thinks the machine drew.

The geometric shape chosen is an Archimedean spiral. This shape provides

a single continuous pen stroke which reduces the amount of travel on the Z

axis.

The first test uses a video sequence with a resolution of 640 pixels by 480

pixels. According to the simulator tests executed earlier, this resolution should

provide crude tracking results but should demonstrate the general functionality

of the system.

Figure 62(a) shows the drawing generated by the machine while Figure

62(b) shows that the tracker was able to track the position of the machine

accurately enough to determine that the machine drew a spiral. The green

data points in Figure 62(b) represent the raw output of the tracker while the

red points are the output of the Kalman filters.

It can be seen that when the machine moves along the Z axis, the X and

Y values are slightly affected. These Z axis motions occur at discontinuities

in the drawing that can be found at around (−20, 130), (20, 15), and (40, 70).

The time required to apply the fiducial detector, the two-dimension-to-

three-dimension conversion, and the filtering has been measured to to be

0.083980 second. This translates to roughly 12 frames per second, which is

similar to what was measured with the help of the simulator.

Overall, this first test shows that the tracker behaves as expected from the

tests on the simulator. The next tests will provide a better estimate of the

performance of the tracker.

10.2.2 Quantitative Test

For the second test, the machine is manually moved to different positions on

a regular grid. At each position, the machine will be instructed to draw a

point on a piece of paper and the camera will take a series of ten photos of

the machine. The piece of paper on which the machine has drawn the points

will then be scanned at a high resolution to allow precise measurements of

the positions of the points. The tracker will be executed on each set of ten

photos and its output will be compared with the measured points on the piece

of paper to characterize the error of the tracker.

The camera used for this test is a Canon Powershot A630, which has a
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Figure 62: Machine drawing (a) and tracker output (b) for a sequence recorded
at 640x480.
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native sensor resolution of 3264 pixels by 2448 pixels. As this resolution is very

large, captured images were resized to a resolution of to 1632 by 1224, which

is a slightly higher resolution than the 1280 by 960 used with the simulator,

but the aspect ratio remains the same.

If we refer to Figure 59, we can determine that the expected maximum

resolution, based solely on the error of the 2D-to-3D conversion, at a horizontal

image resolution of 1632 pixels is lower than 1 mm (0.67 mm to be exact). As

we are working with real data, the detected position of the fiducial corners will

most likely not be exact and we can thus refer to Figure 31 to determine that

the error caused by the 2D-to-3D conversion can range from approximately 0.5

mm in the best case to approximately 3 mm if the fiducial detector is off by 0.6

pixels in the 2D image. Overall, this means that the expected average error

for the current test should be in the range of 1.5 mm to 4 mm. The expected

average error can also be extrapolated from the results of the simulator. At

the current resolution, an average error smaller than 2.95 mm and a standard

deviation smaller than 1.61 mm are expected.

The piece of paper was scanned at a resolution of 600 dots per inches after

drawing approximately 140 points. The resulting image can be seen in Figure

63.

Figure 63: Scan of the points drawn by the machine (scaled)

The points in Figure 63 can be measured accurately by noting that a single

pixel on a 600 dpi scan is equivalent to 0.0423 mm, which far exceeds the

expected three dimensional resolution of the tracker. Once measured, both

these points and the output of the tracking algorithm can be plotted to visually

inspect the error. This plot is provided in Figure 64.

The full table of measurements can be found in the appendix. To compare
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these results with those from the simulator, statistical information about the

last column of the results table, containing the Euclidean norm of the error,

can be extracted. All errors lie between 0.26 mm and 6.11 mm. The error is

found to be 2.59 mm on average with a standard deviation of 1.30 mm. Both

the average error and the standard deviation are slightly smaller than that of

the simulator at a resolution of 1280 by 960, as expected.
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11 Conclusion

This thesis has presented three different approaches to tracking objects moving

in three dimensional space. Fiducial marker tracking has been shown to pro-

vide sub-pixel accuracy and robustness to noise and fast motion. The template

tracking algorithm, while being computationally simpler, fails to track objects

that move fast and is prone to drift. Finally, the model-based tracker imple-

mented has been found to be finicky with respect to the initial pose estimate

and also suffers from drift problems. After characterizing the three tracking

algorithms, the fiducial marker tracker was chosen as the most reliable and

accurate method of the three for the task of CNC machine tracking.

The two tests performed in Section 10 have shown that the tracking ac-

curacy of the real world system is consistent with the predictions and results

obtained from the simulator in Section 9. This demonstrates that using a vi-

sual simulator is a valid means of testing computer vision algorithms before

physical implementation and that the fiducial tracker can indeed be applied to

the task of tracking a CNC machine. The previous two sections have also con-

firmed that the accuracy of the tracking system increases with resolution. The

theoretical accuracy of the tracker was shown to be limited by the inaccuracy

of the fiducial detector. For practical applications, the slight inaccuracies of

the camera calibration model are shown to cause most of the tracking error.

Even if the tracker has inherent sources of error, Figure 58 indicates that,

in theory, any required accuracy should be achievable by either using a larger

image resolution or, inversely, using a zoom lens to restrict the field of view

of the camera, which would increase the amplitude of the 2D shift on the

image plane when the tracked object moves in 3D space. In order to obtain

substantial benefit from a narrower field of view, the entire 3D volume in

which the marker can travel would most likely not be visible. This means that

further development of the tracking method presented in this thesis would

require either the use of an array of cameras, each looking at a different part

of the 3D space, or a steerable camera that can be controlled to keep the

marker in its field of view.

Overall, this thesis has demonstrated that computer vision is a reliable

source of information for CNC machine controllers depending on the machin-

ing task being executed. The system shown is accurate enough to track an

object down to a few millimeters, which is adequate in some low precision
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machining tasks. The accuracy is also enough to detect large deviations of

the machine’s end effector from its predicted position, due to motor failure or

other unforeseen events.
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12 Appendix

12.1 Linear Kalman Filter Implementation

The Kalman filter implementation done for this thesis is based on information

from [33]. Please note that the notation in this section is unrelated to that of

the rest of the thesis. Kalman filters are used in this thesis as a tool to reduce

the effect of noise over multiple frames. To simplify the implementation, the

data being filtered are assumed to be linear or at the very least locally linear,

and thus, linear Kalman filters are used. The current section will detail the

implementation of these filters.

Xk = AXk−1 + w (56)

zk = HXk + v (57)

To track the evolution of the a value x, a state vector X is constructed

as (x, ẋ)T . Physically, x represents the position and ẋ respresents the rate

of change, or velocity, of x. The underlying system governing the value of

the vector X is assumed to be of the form shown in Equation (56) and the

measurements z have the form shown in Equation (57) , where v and w are

noise components with respective normal distributions N (0, R) and N (0, Q).

The A term is the state transition matrix and thus represents the expected

relation between the previous value of X and its current value. The H term

represents the relation between the measured component of X and its full

form.

A =

[
1 t

0 1

]
, H =

[
1 0

]
(58)

As we are only measuring the position component x of X, the forms of H

is given by Equation (58). The position depends on the velocity with respect

to time, thus the t term in the state transition matrix shown in Equation (58).

The value of t is the time interval between measurement, that is, the inverse

of the frame rate of the image sequence.

The noise covariance matrices Q and R were assumed to be diagonal to

simplify computations. The values chosen for the diagonal of the Q matrix

were small as it is assumed that the system has a small amount of noise. It
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was assumed that the measurement process (camera) introduced most of noise

and thus the values chosen for the R matrix were large. The exact values of

Qi,i and Ri,i were chosen based on the properties of the data to be filtered.

X̂−
k = AX̂k−1 (59)

P−
k = APk−1A

T +Q (60)

The Kalman filtering method is applied as a two step process. The first

step is to update the a priori state approximation of X, as shown in Equation

(59), and the covariance matrix of the a priori state approximation error, as

shown in Equation (60).

(a) Constant valued input (b) Constant slope input

Figure 65: Output of a Kalman filter (blue) when presented with the noisy
measurement (green) of a linear system (in red)

Kk = P−
k HT (HP−

k HT +R)−1 (61)

X̂k = X̂−
k +Kk(zk −HX̂−

k ) (62)

Pk = (I −KkH)P−
k (63)

The second step is to compute the a posteriori state approximation, shown

in Equation (62), and the covariance matrix of the a posteriori state approxi-

mation error, shown in Equation (63). These two equations require the com-

putation of the Kalman gain matrix, as displayed in Equation (61).
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Noisy Filtered Improvement
Constant Value 0.024698 0.006366 74.22%
Constant Slope 0.024698 0.009415 61.88%

Figure 66: Measurement of the average absolute value of the distance between
the true value and the two other curves.

Once these computations are done, the current state a posteriori estimation

contains the filtered value of X.

The figures in 65 show an example of the reduction in the amount of noise

when a Kalman filter is applied to noisy measurements. Table 66 shows the

average absolute value of the distance between the true value and the two

other curves (the noisy measurements and the filtered results). This average is

computed over 1000 measurements even if Figure 65(b) only shows the values

from 0 to 250.
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12.2 Table of Measurements

Measured Tracker Error

X (mm) Y (mm) X (mm) Y (mm) X (mm) Y (mm) Norm (mm)

0.1270 0.3387 2.87816 150.2117 2.7935 0.0000 2.7935

−0.0847 150.2117 148.94544 156.24651 −0.9699 6.0348 6.1123

149.9153 150.2117 149.619 5.70885 0.0000 5.3702 5.3702

149.6190 0.3387 4.20224 5.57637 −0.7084 −0.2233 0.7428

4.9107 5.7997 16.40466 3.44433 −1.0460 0.3117 1.0915

17.4507 3.1327 3.62021 17.3544 −0.2745 −0.5619 0.6254

3.8947 17.9163 11.78379 14.14499 −1.1372 −0.5540 1.2650

12.9210 14.6990 21.77412 6.84237 −1.6125 0.0690 1.6140

23.3867 6.7733 27.56774 13.81144 −0.0523 1.3138 1.3148

27.6200 12.4977 23.33744 23.31519 −1.4039 −0.0715 1.4057

24.7413 23.3867 14.66734 26.0354 −1.4710 −0.7379 1.6457

16.1383 26.7733 6.43641 26.41387 0.1711 −0.3171 0.3603

6.2653 26.7310 2.85046 33.68918 −0.4092 −0.8828 0.9730

3.2597 34.5720 12.65187 36.12379 −0.8618 −0.8189 1.1888

13.5137 36.9427 22.62228 33.44542 −0.6374 0.3974 0.7511

23.2597 33.0480 33.99693 35.74457 −1.6334 0.0719 1.6350

35.6303 35.6727 31.38155 26.52961 −1.8358 0.0949 1.8382

33.2173 26.4347 35.12023 16.75203 −0.5524 1.1640 1.2885

35.6727 15.5880 37.29523 6.92198 −0.4941 1.1646 1.2651

37.7893 5.7573 52.93028 7.91033 −0.1177 2.1953 2.1985

53.0480 5.7150 56.79045 28.9444 −0.1099 2.1711 2.1738

56.9003 26.7733 45.26556 19.40028 0.1856 1.6109 1.6216

65.7150 36.3923 45.37339 37.26915 −1.1036 0.6652 1.2886

46.4770 36.6040 50.97943 48.21349 −1.5182 0.6782 1.6628

52.4977 47.5353 43.18651 55.83493 −1.6818 0.2046 1.6942

44.8683 55.6303 36.44823 47.66762 −1.1718 0.2170 1.1917

37.6200 47.4507 24.76005 56.57489 −1.4206 −0.6641 1.5682

26.1807 57.2390 12.40446 42.27877 −0.7282 −0.8539 1.1222

13.1327 43.1327 4.94329 52.21057 −0.8140 −1.4724 1.6825

5.7573 53.6830 13.50295 67.59261 −0.8150 −1.2551 1.4965

14.3180 68.8477 4.44686 76.4212 −0.1675 −1.5798 1.5887
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4.6143 78.0010 25.73561 74.92145 −1.2071 −0.7512 1.4217

26.9427 75.6727 34.30223 65.06646 −1.6244 −0.3522 1.6622

35.9267 65.4187 44.3974 74.85234 −1.2329 0.6190 1.3796

45.6303 74.2333 55.63794 65.49268 −1.0931 1.3863 1.7654

56.7310 64.1063 62.19341 54.70594 −1.0663 1.6156 1.9357

63.2597 53.0903 70.97981 45.12546 −2.9149 0.7651 3.0136

75.9690 25.6727 79.4143 17.26995 −3.8877 1.0470 4.0262

83.3020 16.2230 72.073 6.33607 −3.3033 1.0444 3.4645

75.3763 5.2917 91.77979 7.13925 −3.3425 1.9746 3.8822

95.1223 5.1647 105.87145 20.66772 −0.9019 3.5981 3.7094

106.7733 17.0697 112.10904 27.83642 −1.6586 3.3914 3.7753

113.7677 24.4450 114.77724 8.6575 −1.1918 3.5352 3.7306

115.9690 5.1223 126.46504 16.79277 −0.6470 4.0411 4.0926

127.1120 12.7517 132.51657 9.6629 −1.1241 4.2866 4.4315

133.6407 5.3763 146.85387 22.48043 −0.9778 4.7758 4.8748

147.8317 17.7047 142.1418 10.31331 −0.9485 4.5136 4.6122

143.0903 5.7997 131.30033 29.06166 −1.7053 3.9393 4.2926

133.0057 25.1223 143.13022 42.21759 −1.6534 4.2166 4.5292

144.7837 38.0010 122.58907 37.20234 −2.3216 3.1383 3.9037

124.9107 34.0640 104.79709 40.8273 −1.5952 2.9533 3.3566

106.3923 37.8740 95.35882 29.43857 −0.6525 2.8346 2.9087

96.0113 26.6040 93.97444 46.90186 −2.1639 2.3722 3.2109

96.1383 44.5297 85.30489 59.53382 −2.2304 2.0408 3.0232

87.5353 57.4930 69.98028 63.87571 −2.3904 0.9547 2.5740

72.3707 62.9210 66.2389 79.23934 −1.6774 1.2383 2.0850

67.9163 78.0010 52.45462 85.811 −1.5247 0.3923 1.5744

53.9793 85.4187 45.70462 97.19396 −1.3227 0.0820 1.3253

47.0273 97.1120 36.05288 83.0189 −1.1438 −0.1561 1.1544

37.1967 83.1750 22.1926 95.03157 −0.7284 −1.1068 1.3249

22.9210 96.1383 14.05585 84.44486 −0.7278 −1.5241 1.6890

14.7837 85.9690 2.76759 96.0201 0.2276 −2.2349 2.2465

2.5400 98.2550 14.82616 105.74311 0.0002 −1.3266 1.3266

14.8260 107.0697 3.39993 115.53478 0.5636 −2.2546 2.3239

2.8363 117.7893 17.91483 126.06276 0.7182 −0.7952 1.0715
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17.1967 126.8580 5.71564 133.37429 1.3553 −1.5364 2.0487

4.3603 134.9107 8.75444 143.83165 1.8118 −0.9520 2.0467

6.9427 144.7837 17.75266 144.27574 1.2333 −0.4656 1.3183

16.5193 144.7413 80.15328 75.12521 −2.7254 1.1882 2.9731

82.8787 73.9370 73.60769 87.22663 −3.1233 0.1993 3.1297

76.7310 87.0273 82.24562 95.80917 −2.6650 1.0678 2.8710

84.9107 94.7413 93.88498 88.60012 −2.1264 2.0385 2.9456

96.0113 86.5617 90.95732 108.6842 −2.1753 1.8262 2.8403

93.1327 106.8580 102.35293 96.19786 −2.6424 2.0492 3.3439

104.9953 94.1487 101.37991 116.80546 −1.7528 2.6568 3.1829

103.1327 114.1487 114.25707 109.22787 −1.7119 3.1319 3.5692

115.9690 106.0960 111.28383 130.71998 −1.8065 2.9306 3.4427

113.0903 127.7893 121.42419 118.57075 −1.8355 3.3638 3.8319

123.2597 115.2070 125.65129 138.10624 −0.9527 4.2962 4.4006

126.6040 133.8100 135.96317 130.29821 −2.2918 3.5672 4.2400

138.2550 126.7310 131.52607 147.66458 −1.3949 4.0239 4.2588

132.9210 143.6407 144.03746 139.87013 −1.4235 4.5361 4.7543

145.4610 135.3340 142.00479 150.92567 −1.4665 4.4910 4.7244

134.5720 134.5297 140.70075 120.41561 −2.0509 3.8963 4.4031

142.7517 116.5193 131.31548 108.8458 −2.2829 3.3001 4.0128

133.5983 105.5457 143.47551 98.33232 −2.7898 3.5063 4.4808

146.2653 94.8260 134.07238 90.29297 −2.7856 3.0963 4.1649

136.8580 87.1967 143.24381 77.61206 −2.5982 3.6751 4.5007

145.8420 73.9370 129.33111 68.59017 −3.0819 2.8752 4.2148

132.4130 65.7150 141.14632 58.26387 −1.7323 3.9882 4.3482

142.8787 54.2757 133.12359 49.6457 −1.7024 3.5497 3.9368

134.8260 46.0960 122.02051 59.51971 −2.4668 2.9157 3.8192

124.4873 56.6040 112.23799 48.78858 −2.7997 2.2269 3.5773

115.0377 46.5617 103.04774 59.65212 −2.2439 2.3285 3.2337

105.2917 57.3237 111.17989 67.81569 −2.6301 2.4394 3.5872

113.8100 65.3763 89.96281 65.06552 −3.1275 1.2132 3.3546

93.0903 63.8523 98.79325 74.15259 −2.4767 2.0359 3.2061

101.2700 72.1167 115.08746 89.96883 −2.6172 2.3912 3.5451

117.7047 87.5777 124.32668 78.60694 −3.0817 2.6803 4.0842
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127.4083 75.9267 121.75133 98.42429 −1.7623 3.2173 3.6683

123.5137 95.2070 121.81639 128.1461 −1.8243 3.1508 3.6408

116.6040 143.6830 100.4844 136.9765 −1.8863 2.1505 2.8605

102.3707 134.8260 94.39754 127.27927 −1.6561 2.0723 2.6527

96.0537 125.2070 82.87516 115.49725 −1.8238 1.3486 2.2683

84.6990 114.1487 72.91021 104.86416 −3.0165 −0.2158 3.0242

75.9267 105.0800 60.34002 96.4567 −2.0306 −0.1473 2.0360

62.3707 96.6040 53.02257 102.89254 −1.6341 −0.1555 1.6415

54.6567 103.0480 34.8235 102.32821 −0.7645 −0.7621 1.0795

35.5880 103.0903 25.42911 113.55151 −0.5399 −1.4862 1.5812

25.9690 115.0377 45.73024 117.60213 −0.7044 −0.2295 0.7409

46.4347 117.8317 62.97958 113.05013 −1.1268 0.6371 1.2944

64.1063 112.4130 73.09985 127.51802 −1.7685 0.5330 1.8471

74.8683 126.9850 63.91757 124.14643 −0.9508 0.7174 1.1911

64.8683 123.4290 53.79679 125.61644 −0.7329 0.1978 0.7591

54.5297 125.4187 35.95173 122.1571 −0.3559 −0.5946 0.6930

36.3077 122.7517 28.67633 134.03981 0.5060 −0.4052 0.6482

28.1703 134.4450 34.76506 146.71801 0.6587 −0.1400 0.6734

34.1063 146.8580 44.33128 136.18433 0.0133 0.2577 0.2580

44.3180 135.9267 55.84351 145.04381 −0.5065 0.4295 0.6641

56.3500 144.6143 64.6678 132.74247 −0.7509 0.9221 1.1892

65.4187 131.8203 77.87256 145.00065 −0.2978 2.1643 2.1847

78.1703 142.8363 86.51061 138.5751 −1.1517 2.0134 2.3196

87.6623 136.5617 95.79705 146.13567 −0.8070 2.7490 2.8650

96.6040 143.3867 122.78655 150.95585 −1.2774 3.8862 4.0908

124.0640 147.0697 133.8292 120.40486 −1.9705 3.5892 4.0945

135.7997 116.8157 136.29583 21.29044 −1.3665 3.5858 3.8373

137.6623 17.7047 114.97243 18.18391 −1.8009 2.8922 3.4071

116.7733 15.2917 86.8461 46.9205 1.7661 3.5338 3.9506

85.0800 43.3867 23.16865 43.67346 −1.6997 −1.3642 2.1794

24.8683 45.0377 41.9136 24.49209 −1.1344 0.2164 1.1549

43.0480 24.2757 43.12954 45.12257 −1.4001 −0.2114 1.4160

44.5297 45.3340 52.95448 32.89852 −2.2525 −0.2341 2.2647

76.1383 55.6727 83.57431 67.8882 −3.2414 0.8185 3.3431
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86.8157 67.0697 83.21615 82.53695 −2.4989 1.0976 2.7293

85.7150 81.4393 92.35187 97.42127 −2.6011 1.2406 2.8818

94.9530 96.1807 104.00589 109.5597 −2.3864 2.0244 3.1294
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