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Abstract—Many computer vision applications compare the
shapes of objects, but few papers provide meaningful compar-
isons between different shape distance metrics. This paper will
begin by summarily describing six metrics that are widely used
in the literature. Then a set of criteria to evaluate metrics will
be described and a methodology to test the performance of
these metrics will be presented. Finally, experimental results,
based on the task of tracking articulated human posture from
silhouettes, will be used to determine which metric is best
suited to the purpose of human tracking. We find that most of
the metrics evaluated herein are valid and perform properly
to some extent, but that two of them present more desirable
behaviors and robustness to noise.
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I. INTRODUCTION

A large number of computer vision applications require
a similarity measure between object shapes. For example,
object detection and tracking algorithms rely on silhouette as
the main feature. Silhouettes, or visual contours, are known
to carry a lot of information about the curvature and surface
geometry of the generating object [1]. Relying on shape
can also reduce the influence of varying texture and thus
can make systems more robust to variations of intensities.
Silhouettes are also fairly simple to extract from images
via various methods including optical flow and statistical
background modeling.

While this paper will concentrate on the application of
shape matching to the task of human posture tracking over
image sequences, the evaluation of the image similarity
metrics should be useful for any application that requires
comparisons of object outlines.

Most human tracking and human pose extraction papers
describe the metric they use to measure distance between
observed data and expected data, but few provide the ratio-
nale behind the choice of one metric over others and even
fewer provide comparisons to other metrics. This paper aims
to provide a comparison of widely used metrics and provide
a better understanding of which types of metrics are more
appropriate for the task of comparing human silhouettes. The
intention is thus to implement these metrics and compare
them, from both theoretical and practical standpoints.

A survey of some shape comparison metrics is provided
in [2]. While there is some overlap between the metrics
presented here and those in [2], the current paper goes
beyond simply describing the selected metrics, but also
systematically evaluates them.

When comparing metrics, many methods employ a spe-
cific dataset to measure the metric’s performance. A good
example of this practice in an other domain can be found in
[3]. The application of shape matching to human tracking
involves a variety of other components that can skew results;
we will thus aim to evaluate metrics without relying on a
specific dataset.

II. EVALUATED METRICS

This section will present an overview of the studied
metrics, providing a general description of each. A more
in depth look at each metric can be found in the papers
referenced.

Many of the methods presented by the original authors
are neither translation nor scale invariant; we will attempt
to alleviate these problems by cropping the silhouettes and
scaling the resulting images to a uniform size. For methods
that rely on a chain-coded representation of the silhouette
edge, we will resample the chain code to a fixed number
of points. These constraints should remove some notion
of scale and translation from the metrics, thus simplifying
comparison between silhouettes.

A. Hu Moments[4], [5]
Hu moments are a set of image descriptors that are simple

to compute and represent many aspects of the evaluated
shape such as area, centroid, and orientation. The authors
of [4] mention that image moments can cause a lot of ambi-
guity, but demonstrate that they can be used to successfully
match silhouettes with classes of known pose. They estimate
pose by using an expectation-maximization algorithm to
cluster the Hu moments for a set of pose classes. The
main advantage of this metric is that negative space within
the main shape blob is properly identified as the metric
is computed on the pixel values instead of on the border
pixels. Figure 1(b) provides an example of two large negative
space regions inside a silhouette. Once the Hu moments are
extracted, the distance between two silhouettes is computed
as the Euclidean distance between the moment vectors.

B. Pixel Count[6], [7]
Another simple metric involves the computation of the

number of pixels that differ between two silhouettes. This
method requires good camera calibration or image matching,
as both silhouettes need to be aligned. Cropping the bound-
ing box of the silhouette and scaling to a common size,
as stated previously, also helps in aligning silhouettes. This



metric can also handle negative space within silhouettes,
as discussed in the description of the Hu moments. For
two silhouettes S1 and S2 represented by binary images
of dimensions m by n, we can compute the distance with
Equation 1, where ⊕ is the exclusive or (xor) operation, and
S[x, y] is the value at pixel location (x, y).

D(S1, S2) =

n∑
x=0

m∑
y=0

S1[x, y]⊕ S2[x, y] (1)

C. Chamfer Distance[8]

This metric is computed solely from the contour of the
silhouette. To do so, a chain code representation of the
silhouette edge is extracted by traveling along the edge of
the silhouette and recording the visited pixels. The distance
between two chain code sets S1 and S2 can be computed
via the modified Haussdorf distance presented in Equation 2,
where d(p, q) is the Euclidean distance between two points
in the chain codes. A real Hausdorff distance would take the
maximum instead of the sum.

D(S1, S2) =
∑
p∈S1

min
q∈S2

d(p, q) (2)

D. Turning Angle[8]

This metric requires the computation of a turning angle
diagram, which is generated by recording the angle between
successive points in the chain code. This diagram is said
to better encode the shape of the silhouette than simply
using the chain code point locations. The distance between
two silhouettes can be computed as the sum of squared
differences between the turning angle representations of each
silhouettes.

E. Distance Signal[9]

The chain code representation of the contour is used for
this metric, but an extra piece of information is added.
Instead of simply looking at the position of the contour
points, this metric considers the distance between each point
and the center of mass of the silhouette. The center of mass
(x̄, ȳ) of a silhouette represented by a binary image Si can
be computed either with Equation 3 or via the central Hu
moment.

x̄ =

∑n
x=0

∑m
y=0 xS[x, y]∑n

x=0

∑m
y=0 S[x, y]

, ȳ =

∑n
x=0

∑m
y=0 yS[x, y]∑n

x=0

∑m
y=0 S[x, y]

(3)
The distance between two shapes S1 and S2 with precom-
puted distance signals DS1 and DS2 is computed as the
sum of absolute differences, as shown in Equation 4, where
n is the number of points in the chain code.

D(S1, S2) = D(DS1, DS2) =

n∑
i=0

∣∣∣∣DS1[i]−DS2[i]

∣∣∣∣ (4)

F. Shape Contexts[10], [11]

Shape contexts are 2D histograms that can be computed
at any point along the edge of a silhouette. These histograms
encode the relation between the point at which it is computed
and all other points of the chain code by recording the angle
and distance to the other points. The shape context implicitly
encodes the local curvature and shape of the silhouette. This
metric is translation invariant by design and can be made
scale invariant[12] by scaling the silhouettes and resampling
the chain codes to a fixed number of points. The “distance”
between two shape contexts p and q is computed by the use
of the following χ2 test:

d(p, q) =
1

2

K∑
k=1

[hp(k)− hq(k)]2

hp(k) + hq(k)
(5)

where hi(k) is the value of the kth bin of the histogram
at point i.

To compute a distance between two silhouettes, the au-
thors of [10] suggest finding a one to one mapping between
the points on each silhouette that minimizes the sum of
distances between the two sets. This type of matching is a
full bipartite graph combinatorial optimization problem that
can be solved via the KuhnMunkres algorithm [13].

A computationally simpler method of computing the
distance between two chain code sets is to use Equation
2. This alleviates the need to run the graph optimization
step at the cost of not obtaining a one to one mapping. We
will refer to this simplified version as a greedy set matching
strategy.

III. METHODOLOGY

To make meaningful measurements and test the metrics
previously described, we devised a framework that allows us
to compute all metrics in a fully controlled manner. To do
so, we use an articulated 3D model of a human which can be
rendered in any pose. This framework relies on an OpenGL
rendering system with simple shaders to directly render
silhouettes. Figure 1 shows a few silhouettes generated from
this system.

(a) (b) (c)

Figure 1. Sample rendered silhouettes

We opted to use a human model with a skeletal structure
comprised of n = 37 degrees of freedom (DOF). Table I
describes the skeletal structure.



Table I
PROPOSED SKELETAL STRUCTURE

Index Parent Name DOF
00 – Root / Pelvis 6
01 00 Abdomen 1
02 01 Thorax 3
03 02 Head 3
04 00 Right Hip 0
05 04 Right Thigh 3
06 05 Right Shin 1
07 06 Right Foot 1
08 00 Left Hip 0
09 08 Left Thigh 3
10 09 Left Shin 1
11 10 Left Foot 1
12 02 Right Shoulder 0
13 12 Right Upper Arm 3
14 13 Right Forearm 2
15 14 Right Hand 2
16 02 Left Shoulder 0
17 16 Left Upper Arm 3
18 17 Left Forearm 2
19 18 Left Hand 2

Total DOF 37

To represent the posture of the model, we define a posture
vector of the form:

P = [θ0, θ1, · · · , θn−1, θn] , θi ∈ [0, 1] (6)

Each DOF of the skeleton is configured as an axis of rotation
and the rotation limits. Defining the minimum and maximum
angle limits is what allows us to write the pose vectors with
all elements in the range [0, 1]. The exact definition of the
skeletal structure used for testing is presented in Table I.
Given a variation δi along each DOF, we can define a pose
difference by:

∆12 = P1 −P2 = [δ0, δ1, · · · , δn−1, δn] , δi ∈ [−1, 1] (7)

We represent the projection of the pose vector P into a
2D silhouette via the rendering system by S = R(P). This
formulation allows us to define two distances. The first is
a distance in pose space, as shown in Equation 8, and the
second is the metric similarity measure D(S1, S2) between
rendered silhouettes, as discussed earlier.

D(P1,P2) = D(P1,P1 + ∆21) = ‖∆21‖ (8)

IV. METRIC EVALUATION

Before comparing each of the metrics, one must first
determine what the characteristics of a good metric are. The
author of [2] presents the following three desirable properties
for shape matching metrics:
• Metric Property: The distance between any two sil-

houettes should always be positive and a minimum
distance should only be obtained when comparing a
given silhouette to itself. The distance metric should
also respect the triangle inequality, as presented in
Equation 9.

D(S1, S2) +D(S2, S3) ≥ D(S1, S3) (9)

• Robustness Property: Distance measures should be ro-
bust to the kind of noise that are often encountered

in computer vision problems. Such sources of noise
include discretization errors, blur, and occlusion.

• Invariance Property: The metric should be invariant
to classes of transformations that are expected to be
encountered.

Note that the invariance property is very important for image
matching, but less so for the task of human posture tracking.

A stronger criterion can be added to the Metric Property
by requiring metrics to increase monotonically as we move
away from the correct solution; However, it is not expected
that all metrics will do so over the entire pose space. We
can sample the error manifold to determine the size of the
neighborhood around the correct solution where the metric
behaves monotonically. To test this, we will sample a given
number of points at a distance ‖∆‖ and compute statistics
of the recorded errors. By gradually increasing ‖∆‖, we will
obtain a curve of how each metric behaves as a function of
distance in pose space. From this curve, we will be able to
determine if each error respects the Metric Property.

We expect to see three basic metric behavior types, as
represented by example plots in Figure 2. The first (Figure
2(a)) is a metric that does not respect the Metric Property
as the error does not increase with ‖∆‖, and is thus not
an applicable metric. As all metrics that are tested herein
have already been shown to work by the original authors,
none of the results should resemble Figure 2(a). The second
and third types of metrics (Figures 2(b) and 2(c)) are both
valid with respect to the properties listed previously, but the
metric in 2(c) is superior in cases where a gradient descent
method is used to find the solution as the error increases
linearly over the range of ‖∆‖.
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rr
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E
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E

rr
or

0

(a) Decreasing (b) Plateauing (c) Linear

Figure 2. Three types of possible metric behaviors

Interestingly, the plot shown in Figure 2(c) is simply a
linear plot of the distance in pose space (Error=‖∆‖). This
allows us to compare metrics by measuring if the metric
values correlate well with the distance in pose space. As we
are rendering the poses, we know the value of ∆21 exactly.
This makes it possible to directly compute the Pearson
product-moment correlation coefficient between D(S1, S2)
and D(P1,P2).

The Robustness Property will be investigated by testing
the metrics with the addition of noise. We will be simulating
two common problems found in human tracking applica-
tions: ground shadows and camera noise. These sources of
noise will change the overall shape of the silhouette and
may cause a reduction in the performance of some metrics.
Figure 3 shows the silhouettes for six test cases that will be
considered.



• Ground Shadows (Figures 3(b) and 3(e)): While there
exists a multitude of algorithms to segment the silhou-
ette from an image, most of them suffer from difficulties
dealing with shadows [14]. A blob will thus be added
below the feet of the silhouette to simulate shadows
cast on the ground.

• Camera Noise (Figures 3(c) and 3(f)): Camera noise
may also affect the accuracy of the silhouette segmenta-
tion. This type of noise will also affect the segmentation
and may cause mis-labeled pixels that will result in
variations along the edge of the silhouette. To simulate
this, we can randomly displace pixels along the edge.

The invariance property can be explored by testing the
metrics under different scene configurations. We will run
two sets of tests, one with the 3D human model facing the
camera (Figures 3(a), 3(b), and 3(c)) and the other with the
camera looking at the model sideways (Figures 3(d), 3(e),
and 3(f)).

(a) (b) (c)

(d) (e) (f)

Figure 3. Reference silhouettes used for the tests, viewed from the front
(a,b,c) and from the side (d,e,f). Shadows (b,e) and noise (c,f) are added
to test robustness.

V. EXPERIMENTAL METHODOLOGY

As stated earlier, the initial experiment involved recording
the values of the metrics as we move away from the correct
solution. The absolute maximum distance between two poses
occurs when P1 = [0, 0, ..., 0] and P2 = [1, 1, ..., 1], when
we obtain ‖∆‖ = D(P1,P2) = 6.08. To simplify testing
procedure, we kept the values of the first 3 DOFs constant
at zero. This choice eliminates the effect of the translation
components, which have little to no effect on the rendered
silhouettes because of the scaling and cropping discussed
earlier. For the first few tests, we set P1 = [0.5, 0.5, ..., 0.5]
as a reference pose and vary P2, which means that the
maximum distance between P1 and P2 is halved to 3.04.

Metric Values are thus recorded as ‖∆‖ is increased
from 0 to 3.04. For each increment step of ‖∆‖, a few
hundred sample measurements of the metrics are computed
in order to calculate the minimum and maximum values of
the error as well as average value and standard deviation.
These values are presented in Figure 4, with the average as

a black line, error bars representing the standard deviation
and a gray-shaded region to show the range of metric values
between the minimum and maximum. From these results, it
is possible to determine the region in which each metric
is monotonically increasing and record it in Table II. The
Pearson product-moment correlation coefficient between the
error function and ‖∆‖ is computed to further describe
the behavior of the metric. To do so, the error manifold
of each metric is sampled at a few hundred randomly
selected locations within ‖∆‖ ∈ [0,M ] to generate a set
of measurements X . For each of these measurements, the
value of ‖∆‖ is recorded to obtain a set Y . The correlation
between these two sets is computed according to Equation
10. The correlation coefficients are also recorded in Table
II.

ρX,Y =
cov(X,Y )

σXσY
(10)

To obtain fair results, the value of M is selected as the
largest monotonically increasing region of the metrics in the
given test. For example, the correlation coefficients reported
for the front of the clean case (column 3) of Table II are
computed with M = max(0.53, 0.61, 0.76) = 0.76.

The other measure that is recorded to compare the metrics
is the time required to compute the distance between two
silhouettes. Similar to the other tests, the distance between
a few thousand silhouettes is computed and the execution
time is recorded. This allows the computation of the average
time and standard deviation. The absolute values alone have
little meaning as they are mostly dependent on the hardware
used, but the relation between them provides an indication
of performance. These results are also be reported in Table
II.

To get a more precise understanding of how the metrics
behave, we also conduct a set of experiments that records
the error values as we move a distance δ from the reference
pose along each DOF independently. As these experiments
result in a large number of plots, they will not be included
within this paper because of space constraints, but can be
found at http://cim.mcgill.ca/∼olivier/crv2016/, along with
all other results.

The final test, which acts as a validation, involves once
again the measurement of the metric values as a function
of distance in pose space. For this experiment, both poses
are selected randomly, instead of keeping the reference
pose constant. This should demonstrate how the metrics
behave on arbitrary poses and thus confirm wether the results
obtained in the previous tests are a good representation of
the overall behavior of each metric.

VI. RESULTS & CONCLUSIONS

Figure 4 shows the plots of the error versus the pose-space
distance for each metric, when applied to the first tested
case with the reference silhouette shown in Figure 3(a).
The other plots have not been included because of space
constraints, but can be found on the aforementioned website.
The relevant information from the plots are recorded and
summarized in Table II.

As stated earlier, the goal here was not to determine
whether the metrics are valid in general cases, as this has



already been done by the original authors, but to systemati-
cally determine how appropriate each metric is to the specific
task of articulated human posture tracking from silhouettes.

The first result that stands out from Table II is that Hu
moments only increase monotonically over a fairly small
region of the pose space. While they may be good metrics
for matching between shape classes, they are not appropriate
for matching slight variations in the pose of humans. The
monotonic region measure also allows us to notice that
the turning angle metric fails in the presence of noise
or shadows. Similarly, the distance signal is seen not to
be robust in the presence of shadows. Disregarding these
three metrics, we are left with the pixel count, the chamfer
distance, and the shape contexts. The chamfer distance is
monotonic over a larger region than the other two, especially
when the human is not facing the camera. However, the pixel
count metric has a higher correlation coefficient in all tested
cases.

The last element in Table II that can be used to compare
the metrics is the runtime. The first interesting result to note
here is that while the type of matching for shape contexts
has little to no effect on monotonicity, and only a marginal
effect on the correlation to pose-space distance, there is a 20
percent difference in the run times between the two methods.
The trade-off between the performance of the metrics and the
execution time difference leads us to believe that the added
complexity of full bipartite graph matching is not necessary
to obtain adequate results. There is a sharp contrast between
the run times of the pixel count metric and that of the
chamfer distance. The fact that the chamfer distance has
a large run time was expected as it is the only one of
the algorithms with an O(n2) complexity with n being the
number of points in the chain code. The complexity of the
pixel count is O(n) with n the number of pixels in the
silhouette. The difference in run time is further explained
by the fact that the pixel count only requires integer and
bitwise operations, whereas the chamfer distance relies on
floating point distance computation.

By looking at the results from the test where we move
along each DOF independently and comparing the plots
for the pixel count and chamfer distances, we can see that
the pixel count distance varies more smoothly with δ and
presents less small variations (that appear as noise on the
curves). This further indicates that the pixel distance is more
appropriate for our purposes.

To conclude, the key finding of this paper is that all
of the metrics discussed perform reasonably well in ideal
conditions, but only the pixel count metric, the chamfer
distance, and the shape contexts are robust to the types
of noise that are commonly encountered in human posture
tracking applications and are thus appropriate for such
applications. Furthermore, with a higher correlation to pose-
space distance and a lower computation time, the pixel
count distance is deemed to be slightly superior to the other
metrics.

These conclusions were arrived at by producing a sys-
tematically varied dataset under experimental control and
probing the strengths and weaknesses of the metrics, rather
than relying on a particular existing (and limited) dataset.
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advances in vision-based human motion capture and analysis,”
Computer vision and image understanding, vol. 104, no. 2,
pp. 90–126, 2006.



Table II
RESULTS OF THE TESTS

Clean Floor Shadow Noise
Monotonic Correlation Monotonic Correlation Monotonic Correlation Run Time (µs)Region Coefficient Region Coefficient Region Coefficient

Metric Front Side Front Side Front Side Front Side Front Side Front Side Average Std.Dev.
Hu Moments 0.53 0.38 0.168 0.337 0.08 0.30 0.117 0.201 0.08 0.38 0.039 0.338 93.70 19.60
Pixel Count 0.61 0.46 0.730 0.746 0.61 0.46 0.747 0.741 0.61 0.76 0.727 0.748 0.59 0.08
Chamfer Distance 0.61 0.76 0.688 0.718 0.61 0.76 0.686 0.709 0.61 0.76 0.681 0.714 4300.88 1071.97
Turning Angle 0.61 1.37 0.672 0.700 0.00 0.61 0.415 0.666 0.08 0.76 0.099 0.572 37.22 6.28
Distance Signal 0.76 0.76 0.796 0.743 0.00 0.76 0.208 0.658 0.76 0.76 0.797 0.718 0.42 0.06
Shape Contexts
Greedy Matching 0.61 0.46 0.714 0.684 0.61 0.46 0.691 0.659 0.61 0.46 0.703 0.681 30.75 6.86
Bipartite Matching 0.61 0.46 0.744 0.692 0.61 0.46 0.728 0.664 0.61 0.46 0.726 0.677 38.07 6.73
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Figure 4. Results for the basic case observed from the front


