Situational Awareness for Manufacturing Applications **Olivier St-Martin Cormier, Andrew Phan and Frank P. Ferrie**

Introduction

We describe a system capable of continually tracking the state of an environment to support the development of a robotic assistant for industrial assembly tasks.

Primary Objectives

- Create a centralized representation of the state of an environment
- Track 32 DOF human poses within the described world

Main Contributions

- Database-style system supporting a novel timestamp handling model.
- Human tracking capable of detecting and resolving self and mutual contacts

Figure 1: Worker looking at rendered state of the world

Acknowledgements

We acknowledge REPARTI, NSERC, GM and NVIDIA for their financial and hardware support.

Dept. Electrical and Computer Engineering & McGill Centre for Intelligent Machines

Situational Awareness

A situational Awareness Database (SADB) system was developed to maintain a representation of the world state.

Architecture

Figure 2: Simplified block diagram of the SADB architecture

Key Features

- Explicit timestamp representation
- Real-time operation

Semantic Data Organization

Categorized data can be queried through standard mathematical set operations.

Figure 3: Venn-diagram representation of the three basic query functions, with selected region in pink.

An optical flow voting scheme is used to label each point.

Performance Evaluation				
\mathbf{DB}	Local	$(\mu \mathrm{s})$	Networ	$\mathbf{k} \; (\mu \mathrm{s})$
System	Read	Write	Read	Write
SADB	1321	942	10095	11668
Redis	932	1073	10118	11967
MongoDB	348812	2927	3742027	11375
Table 1. Average read and write times for 3 database systems				

Table I. Average read and write times for 5 database systems

3D Human Pose Tracker

Figure 4: Four Kinect depth images are merged and segmented to obtain a foreground point cloud

Figure 6: Geodesic distance graph with an invalid edge

Figure 7: Points labeled by optical flow

The geodesic distance graph is updated to remove edges with non-compatible labels.

The most important values tracked by the system for safe interaction are:

- Worker Position
- Worker Pose
- Worker Gesture
- Handover Location
- Task State

We have presented a general-purpose system capable of leveraging sensor networks to maintain a consistent representation of an environment and of the humans within.

Figure 8: Extracted skeletal pose with reference Vicon skeleton

Case Study

Test platform simulates realistic working environment for a car door assembly task.

Figure 9: Workspace with 4 Kinects

Conclusion

Additional Information

• www.cim.mcgill.ca/~apl/database/sadb/ • {aphan2,ferrie,olivier}@cim.mcgill.ca